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Person Re-Identification (ReID) is a challenging problem in many video analytics and surveillance applications,
where a person's identity must be associated across a distributed non-overlapping network of cameras. Video-
based person ReID has recently gained much interest given the potential for capturing discriminant spatio-
temporal information from video clips that is unavailable for image-based ReID. Despite recent advances, deep
learning (DL) models for video ReID often fail to leverage this information to improve the robustness of feature
representations. In this paper, the motion pattern of a person is explored as an additional cue for ReID. In partic-
ular, a flow-guidedMutual Attention network is proposed for fusion of bounding box and optical flow sequences
over tracklets using any 2D-CNN backbone, allowing to encode temporal information along with spatial appear-
ance information. Our Mutual Attention network relies on the joint spatial attention between image and optical
flow featuremaps to activate a common set of salient features. In addition to flow-guided attention,we introduce
amethod to aggregate features from longer input streams for better video sequence-level representation. Our ex-
tensive experiments on three challenging video ReID datasets indicate that using the proposed approach allows
to improve recognition accuracy considerably with respect to conventional gated-attention networks, and state-
of-the-art methods for video-based person ReID.

© 2021 Published by Elsevier B.V.
1. Introduction

Person Re-Identification (ReID) refers to the problem of associating
individuals over a set of non-overlapping camera views. It is a key object
recognition tasks, that has recently drawn a significant attention due to
its wide range of monitoring and surveillance applications, e.g., multi-
camera target tracking, pedestrian tracking in autonomous driving, ac-
cess control in biometrics, search and retrieval in video surveillance,
and human-computer interaction communities. Despite the recent
progress with deep learning (DL) models, person re-identification re-
mains a challenging task due to the non-rigid structure of the human
body, the variability of capture conditions (e.g., pose, illumination,
blur), occlusions, and background clutter.

ReID systems can apply in image-based and video-based settings.
State-of-the-art [1–4,14,36,38,49,50] approaches on image-based set-
ting seek to associate still images of individuals capturedwith a network
of non-overlapping cameras. In case of video-based ReID, input video
tracklets of an individual are matched against a gallery of tracklet
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representations, captured with different non-overlapping cameras. A
tracklet corresponds to a sequence of bounding boxes that were cap-
tured over time for a same person in a camera viewpoint, and are ob-
tained using a person detector and tracker. Compared to image data,
video data providesmotion information in addition to appearance infor-
mation which can further enable the system to capture person's body
silhouette via post processing. Thus, video-based approaches allow to
exploit spatio-temporal information (appearance and motion) for dis-
criminative feature representation.

As illustrated in Fig. 1, state-of-the-art approaches for video-based
person ReID typically learn global features in an end-to-end fashion,
through various temporal feature aggregation techniques [16,17,19,
46]. From this figure, the query input to the feature extractor is a
video clip (i.e, a set of consecutive bounding boxes extracted from a
tracklet) of N frames long. A single feature vector is extracted by aggre-
gating features from each frame in the query video clip. This is then
compared with a gallery containing n identities, each one having a set
of aggregated feature representations of clips from previously-
captured tacklets.

Given a video clip (fixed size set of bounding boxes extracted from a
tracklet), the feature extractor (CNN backbone) produces image-level
features, while the feature aggregator generates a single feature repre-
sentation at the clip level, using either average pooling, weighted addi-
tion, max pooling, recurrent NNs, etc. [16] in the temporal domain.
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Fig. 1. Block diagram of a generic DL model specialized for video-based person ReID. Each query video clip from a non-overlapping camera is input to a backbone CNN to produce a set of
features embeddings, one per bounding box image. The features are then aggregated to produce an aggregated feature representation each for both video and optical flow clip, which is
then matched against clip representations stored in the gallery.
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Although these aggregation approaches enable to incorporate diverse
tracklet information for matching, and can achieve a higher level of ac-
curacy than image-based approaches, they often fail to efficiently cap-
ture temporal information which could propagate as salient features
throughout the video sequence. Additionally, the performance of
state-of-the-art methods decline as the length of video clips grows be-
yond 4 or 6 frames [16,46].
Fig. 2. Example of a sequence of bounding boxes images from the MARS dataset (top row), a
sequence can be observed from the optical flow map.

2

Optical flow streams has been previously used to capture themotion
dynamics of a person walking in a video stream. Moreover, as shown in
Fig. 2, the visual appearance of optical flow of a person walking or mov-
ing resembles the silhouette of the person, often suppressing the back-
ground static objects. This can potentially be used as a mask on the
appearance stream to highlight common saliency between frames. In
addition to it highlighting common saliency across frames, the
nd its corresponding dense optical flow map (bottom row). The common saliency in the
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silhouette produced by optical flow can therefore be a good source of
spatio-temporal attention.

Fig. 2 shows that the flow features are coarse representation of se-
mantic information of moving objects. Unlike action recognition
which depends heavily on motion features, accurate ReID is more de-
pendent on appearance features. Hence, there is a scope to combine
the strengths of optical flow and appearance (video stream) features
for ReID. Previous attempts to include optical flow information into
ReID systems [12,34,51] focused on integrating this information just as
an additional input stream without exploiting the relationship further
between these two streams. This approach has limited effectiveness be-
cause optical flow only represents coarse semantic features of moving
objects (different from the image stream), and not image-like appear-
ance information. Moreover, the model in [12] is related to the two-
stream network proposed in [42] that incorporates motion and appear-
ance feature for action recognition. Two-streamnetworks that are effec-
tive for action recognition are less effective for ReID [12].

Given the aforementioned justification, we consider the correlation
between the visual appearances acrossmotion and appearance streams,
alongwith their individual contribution tomotion dynamics. In order to
capture long-term spatial information and temporal dynamics in a video
clip, a method to aggregate features from longer sequence effectively is
presented. This is unexplored in the literature for video person-ReID,
thereby undermining the global saliency in the feature representation
by using optical flow for both appearance and motion information.

In this paper, a DL model for flow-guided attention is introduced for
video-based person ReID that encodes joint spatial attention between
features of temporal (optical flow) and spatial (image appearance) in-
formation across a tracklet. The proposedMutual Attention network en-
ables to jointly learn a feature embedding that incorporates relevant
spatial information from human appearance, along with their motion
information, from both appearance andmotion streams. TheMutual At-
tention network includes both optical flow streamand image stream for
ReID, and leverages the mutual appearance and motion information.
We also propose a feature aggregation method that allows integrating
information aggregation from longer tracklets. Unlike prior work in lit-
erature where feature aggregation is achieved by pooling or temporal
attention from image feature, the proposed Mutual Attention network
relies on aweighted feature additionmethod over images in a sequence
to produce a single feature descriptor based on optical flow and image
information. During feature aggregation, a reference frame from each
tracklet is selected based on maximum activation from both streams,
andweights are assigned for individual features using image and optical
flow information. Attention is enabled from optical flow in both spatial
and temporal domain to extract discriminant features for ReID.

The paper is organized as follows. The next section provides some
background on DL models for spatio-temporal recognition, optical
flow, and attention mechanisms, as they relate to video-based person
ReID. Then, Section 3 describes the architecture and associated formula-
tion for our Mutual Attention network. Section 4 and 5 present the ex-
perimental methodology and qualitative and quantitative results,
respectively. The proposed flow-guided mutual attention network is
validated on the challenging MARS, Duke-MTMC, and ILIDS-VID
datasets for video-based person ReID. Experimental results show that
it can outperform state-of-the-art approaches. Results also indicate the
its potential for higher accuracy by processing longer video clips to cap-
ture multiple appearance variations.

2. Related work

2.1. Image-based person-ReID

The idea of using CNNs for ReID stems from Siamese Network [5],
which involves two sub-networks with shared weights, and is suitable
for finding the pair-wise similarity between query and reference im-
ages. It has first been used in [56] that employs three Siamese sub-
3

networks for deep feature learning. Since then many authors focus on
designing various DL architectures to learn discriminative feature em-
bedding. Most of these deep-architecture based ReID [1,9,10,30,52] ap-
proaches introduce an end-to-end ReID framework, where both feature
embedding and metric learning have been investigated as a joint learn-
ing problem. In [1,52], a new layer is proposed to capture the local rela-
tionship between two images, which helps modeling pose and
viewpoint variations in cross-view pedestrian images. Recent ReID ap-
proaches [2,37,40,45,47,49,59,60,62] rely on incorporating contextual
information into the base deep ReID model, where local and global fea-
ture representations are combined to improve accuracy. [23,35] use dis-
similarity space instead of feature space for domain adaptation and
occluded re-ID. A few attention-based approaches for deep re-ID [24,
45,60] address misalignment challenges by incorporating a regional at-
tention sub-network into a base re-ID model. A thorough review of
state-of-the-art on architecture-based approaches underscores the im-
portance of considering local representations, e.g., by dividing the
image into soft stripes [49] or by pose-based part representation [37,
40,45,47,59,60,62]. Although these methods have achieved consider-
able performance improvements, they fail to incorporate temporal in-
formation due to their image-based setting.

2.2. Video-based person-ReID

Video ReID has recently attracted some interest since temporal in-
formation allows dealing with ambiguities such as occlusion and back-
ground noise [16,17,19,46]. An important problem in video-based
ReID is the task of aggregating the image level features to obtain one sin-
gle composite feature or descriptor for a video sequence. [16] have
approached this problem by frame level feature extraction and tempo-
ral fusion by using recurrent NNs (RNNs), average pooling, and tempo-
ral attention (based on image features). Average Pooling in temporal
dimension can be viewed as summing the features of the sequence by
giving equal and normalized weights to them. Average pooling of
image instance features from a given sequence have proved to be useful
in most of the cases, even compared to other DL model based on RNNs
or 3D-CNN [16]. 3DCNN has been experimented in [16,26] but have
not been very effective in summarizing video sequence for reID. But
there could be certain case of individual image in a sequence such that
they either have higher noise content or the appearance in the image
does not contributemuch to an individual's identity, then these become
the debatable cases for Average Pooling.

2.3. Attention mechanisms

Attention can be interpreted as a means of biasing the allocation of
available computational resources towards the most informative com-
ponents of a signal [20]. A mask guided attention mechanism has been
proposed in [43], where a binary body mask is used in conjunction
with the corresponding person image to reduce background clutter.
Somewhat similar to [43], co-segmentation networks have achieved
significant improvements in ReID accuracy over the baseline by
connecting a new COSAM module between different layers of a deep
feature extraction network [46]. Co-Segmentation allows extracting
common saliency between images, and using this information for both
spatial- and channel-wise attention. Other related work for attention
in video ReID, [7] attention is employed in both temporal and and spa-
tial domain. Video stream has been taken advantage of by [44] by
extracting complementary region based feature by from different
frames to obtain informative features as a whole.

2.4. Optical flow as temporal stream

It often serves as a good approximation of the true physical motion
projected onto the image plane [51]. Optical flow has been employed
for temporal information fusion in [12,34], in a two stream Siamese
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Network with a weighted cost function to combine the information
from both the streams. It uses a CNN that accepts both optical flow
and color channels as input, and a recurrent layer to exploit temporal re-
lations. Its important to note that prior to [12,42] have used two stream
networks but for action recognition. Two stream networks on their own
are useful in action recognition as impact ofmotion cues in action recog-
nition are higher in action recognition than that of ReID [12]. Therefore
here is a necessity to use optical flow in a way that it can be leveraged
for appearance related task. However, traditional two-stream networks
are unable to exploit a critical component in re-id i.e. appearance across
both optical flow and image stream together. Similar to our motivation
for using optical flow for appearance along with motion has been
discussed in [32]. Similar to our work, motivation for considering long
term temporal relationship has been discussed in [11].

It can be summarized from the above that, as discussed in [41,43,46],
various saliency feature enhancement methods have been proposed,
and they often improve the overall accuracy. Optical flow typically en-
codes motion information in contrast to appearance information, and
hence there is scope to enhancing appearance information frommotion
and vice-versa. The advantages of long-term information fusion across
tracklets are highlighted in [11,32]. Although long-term aggregation of
tracklet information can be beneficial, it also suffers from integration
of noise while processing longer tracklets. Our proposed approach
aims tomitigate this problem through attention-based feature aggrega-
tion, thereby taking full advantage of long-term feature aggregation.

3. Proposed mutual attention network

Wepropose a newmodel for flow-guided attention – theMutual At-
tention network. It learns spatial–temporal attention from optical flow
thereby focusing on common salient features of a given person during
its motion across consecutive frames of a given video clip. Although a
two stream Siamese network has been proposed in [12], they have in-
cluded optical flow as an input for re-identification, and do not exploit
the full potential of this information. Hence, we seek to leverage the vi-
sual appearance of both spatial and temporal streams, i.e., image and
optical flow streams, by producing a correlation map between them in
the feature space. This correlation map provides attention for both
input streams. The temporal information in both the streams is en-
hanced by enabling the use of longer video and optical flow clips with
our proposed feature aggregation method. Our Mutual Attention net-
work therefore includes both opticalflowand image streams to produce
mutual attention, and also to combine the features into an aggregated
representation from a video or optical flow tracklet or clip.

As illustrated in Fig. 3, the network accepts two streamsof input (op-
tical flow and image sequences). At the last layer of the network, the
features from the two streams are concatenated after feature aggrega-
tion in the temporal domain. While the image stream helps in ReID by
focusing on the appearance of the person, optical flow stream helps by
capturingmotion pattern of a given person.We propose to achieve fea-
ture aggregation to produce a feature vector by weighted addition. Our
proposed method handles generation of weights that indicate the im-
portance of individual image feature in producing a single video feature
leveraging upon mutual attention.

3.1. Mutual attention

In contrast to the previous method for flow guided attention, we
propose to produce cross-streamattention ormutual attention between
the optical flow stream and image stream to emphasize areas in the fea-
ture space that have high activation across both the streams.

An input video clip is represented by Ic1,Ic2, …,Icn and corresponding
optical flow estimations Fc1,Fc2, …,Fcn, where c indicates the identity of
the video clip of length n, our objective is to extract a discriminative fea-
ture vector ϕc for ReID. Given a video clip and its corresponding flow
maps, we extract the features ϕc and fc from the deep CNNs
4

respectively. The expected output is a concatenated feature vector of
both optical flow and image features to be used for ReID. Both the
CNNs share common architecture but do not share the parameters. Let
l be the intermediate layer of the k-layer deep CNN and let appearance
CNN be represented by Happ and optical flow stream CNN by Hflow

with a total number of k layers. With t = 1,2,3…n we have:

ϕt
c ¼ Happ Itc

� �
, ftc ¼ Hflow Ftc

� � ð1Þ

If features from layer l are expressed as ϕl, then:

ϕl,t
c ¼ Happ,l I

t
c

� �
, fl,tc ¼ Hflow,l Ftc

� � ð2Þ

Both the features at layer l are of dimensions, N × C × I × J,
representing sequence length,channels, width, height respectively.
The features are then passed through 1x1 convolution with Relu activa-
tion to produce amap of sizeN× 1 × I× J each. The correlation between
the features is given by:

ρ ¼ ζapp ϕl,t
c

� �
⊙ζ flow fl,tc

� �
ð3Þ

In the Eq. (3), ζapp and ζflow are the embeddings with 1x1 convolu-
tion with Relu discussed above. ρ when activated by a sigmoid func-
tion forms the mutual attention map Mc

t between both the streams of
input is:

Mt
c ¼

1
1þ e−ρ ð4Þ

Eq. (3) aims to capture spatial similarities between the Deep CNN
features of optical flow and video stream. Optical flow is the result of
motion across two frames hence optical flow activation contains infor-
mation of common saliency between frames. It mostly represents a sil-
houette of the person. Optical flow could also contain some noisy
background motion. Activation from the video stream contains Person
specific spatial information along with noises such as occlusion. The
noise in both these streams is not common, but the activations in salient
regions are common. Multiplying these two activations as in the Eq. (3)
identifies similar salient regions in both the streams, thereby reducing
the activations due to noise. Therefore, the product fortifies the activa-
tions across common saliency in both the streams.

Finally, mutual attention is applied to the intermediate features ϕc
l,t

and fcl,t at the intermediate layer (by an element-wise multiplication
of attention map with feature maps) to obtain mutually attended ap-
pearance features Ψapp and Ψflow to continue feature extraction con-
tinues in the remaining layers of the deep CNN to obtain final output
features ϕc

t and fct for image and flow stream, respectively:

Ψapp
t
c ¼ ϕl,t

c ⊙Mt
c , Ψflow

t
c ¼ fl,tc ⊙Mt

c ð5Þ

3.2. Weighted feature addition

We propose a method to aggregate image level features to obtain a
single feature vector for a given video sequence particularly enabling
to use longer video sequences. The appearance features and optical
flow features are then concatenated to for ReID during inference, and
to learn a classifier during training.

The output from image and optical flow streamCNNs generateϕc for
a sequence c from instances ϕc

1,ϕc
2,…,ϕc

n and fc from fc1,fc2,…,fcn. The first
task is to identify salient feature from a given sequence of features. In
our case, a salient feature can be defined as the one that has maximum
activation in both image and flow stream. Since the features have been
attended bymutual attention, given a sequence, a max operation in the
temporal domain for each of the sequence will identify the salient fea-
ture among the sequence. We hereafter will refer to this salient feature



Fig. 3.Our proposedMutual Attention network architecture. The system inputs is a video clip and corresponding flowmaps. The corresponding features of the inputs attend to each other
using our Mutual Attention module. The network outputs a concatenated feature representation from both optical flow and image stream.
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as reference frame denoted by ϕc
max and fcmax. In the next step an adap-

tive weight is generated for each of the features in the sequence based
on how close each feature is with the reference feature. This is achieved
by applying a cosine similarity between the reference feature and rest of
the features int he sequence. The cosine similarity function is not ap-
plied directly on the features ϕc

n and fcn. Instead a tiny embedding ε(.)
is applied on the ϕc

n, fcn and reference feature ϕc
max, fcmax to obtain em-

beddings ϕεn, fεn, ϕεmax and fεmax:

wn
app ¼ exp

ϕnε � ϕmaxεϕnε�� �� ϕmaxε�� ��
 !

ð6Þ

wn
flow ¼ exp

fnε � fmax
ε

fnε
�� �� fmax

ε

�� ��
 !

ð7Þ

ϕc ¼ ∑
n

t¼1
wappnϕn

c ð8Þ

A tracklet is a collection of person bounding boxes with same iden-
tity. Applying an average pooling operation on an embedding [16] ap-
pears like a sensible solution to summarize tracklet features. However,
it is possible that one or more boxes in a tracklet could be occluded, or
may contain other kinds of noise that may corrupt an average pooled
tracklet. A tracklet can be compared to a cluster since a tracklet is a col-
lection of same identities. Hence, applying the “max” operation on the
tracklet is comparable to identifying the densest sample in a given clus-
ter. The embedding that has maximum activation among all other
5

embeddings can be assumed to have the most influence on the cluster
center. Hence the Max embedding is used as a reference to calculate
similarity with other embeddings in Eq. (6), allowing to calculate
weights for each of embedding. These weights help determining the
closeness of each embedding with the Max embedding (similar to a
cluster center) which is the representative of a tracklet. Noisy embed-
dings that have lower activations can be disregarded by lower weights.
The exponential operator ensures non-linearity, as well as assuring a
minimum weight of 1 to each of the embedding. Thereby considering
all the embeddings in a tracklet for the final representation without
completely disregarding noisy features.

A similar approach is followed to accumulate optical flow embed-
dings with Eq. (7). In order to obtain one single embedding for a given
tracklet, feature representations in the tracklet are aggregated by
weighted addition assigning weights obtained in Eqs. (6) and (7) to
each of the embeddings in a given tracklet. These weights can also
be compared to attention-based weights where most important
frames in a tracklet are given higher weights, and giving lower
weights to noisy frames. From Eq. (8) we obtain outputs ϕc and
when used with wflow to obtain fc which are aggregated video features
for image and flow respectively. These two features are concatenated
to form ϕcat which is passed though a fully connected layer of size
same as ϕc to produce the final feature for classification or re-
identification.

The network is trained on logistic loss and Triplet loss similar to the
method used in [46]. During testing the fully connected layer is re-
moved and the remainder of the network is used for feature extraction
purpose and to match against those in gallery.



Fig. 4. Experimental setup for our baseline gated attention network. The system inputs a sequence of bounding boxed images and the corresponding optical flowmaps from a given video
clip. The features extracted from optical flow are pooled in channel dimension, and multiplied with intermediate layers of deep feature extraction after activation to obtain attended
features for ReID. The network outputs a feature vector ϕc per video clip.
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4. Experimental methodology

4.1. Datasets

Experiment are performed on 3 challenging and widely-used
datasets for video-based person reID. MARS [61] dataset is one of the
largest datasets for video Person-ReID. The dataset has been collected
from six cameras with a total of 1261 identities. Another dataset com-
monly used in literature for evaluating video person ReID is Duke-
MTMC [39,55] dataset containing 702 identities andmore than 2000 se-
quences for testing and training each. Duke-MTMC dataset are of higher
resolution compared to that of MARS. We also evaluate on ILIDS-VID
[53] dataset, which has a total of 300 identities with videos across two
cameras. The dataset is comprised of sequences from two disjoint cam-
era views. One interesting point to be noted with ILIDS datasets is that
the tracklets have been generated by hand annotation unlike detector
based annotation in MARS dataset. This makes the bounding boxes
well aligned in ILIDS-VID dataset enabling the optical flow estimation
to be less noisy.
Table 2
An ablation study of contribution of different module, i.e., our Gated Attention and our
4.2. Settings

We follow the overall systemarchitecture in [16] (baseline) and [46]
(COSAM). They achieved state-of-the-art results on several ReID
Table 1
Accuracy of our Baseline (ResNet50) with Temporal Pooling (TP) and our Baseline with
Mutual Attention (MA) + TP on MARS dataset, over different layers of ResNet50.

Method maP Rank-1

Baseline [16] 75.8 83.1
Baseline+MA (Layer2) 78.2 84.5
Baseline+MA (Layer3) 78.8 84.9
Baseline+MA (Layer4) 80.0 86.6
Baseline+MA (Layer5) 78.1 84.3
Baseline+MA (All) 51.2 66.1

6

datasets using the ResNet50 CNN for feature extraction. We propose
to use ResNet50 and SE-ResNet50 as our backbone networks to learn
features invariant to cluttered background by attending with saliency
map obtained from optical flow estimations. We have shown results
with each of the networks as backbone separately. The networks have
been pre-trained on the ImageNet [13] dataset. We experiment at dif-
ferent layers of the ResNet50 to select the ideal location in the network
to generatemaximum attentionwith optical flow. To extract video level
feature from instance level features, we compare our proposed
weighted addition method with that of temporal Average Pooling
(AP) and Temporal Attention (TA) based method as illustrated in [16,
46]. The Shallow CNN in our experimental setup for gated attention is
based on AlexNet and the sub-Network for weighted addition is a two
layer MLP of size 2048 nodes in each layer.

Common data augmentationmethods such as random flips and ran-
dom crops are followed during training. We use ADAM optimizer to
train our model with a batch size of 32. We use a sequence length of 4
to train our model. The flow guided attention has been applied at
layer 4 of the ResNet50 and an empirical study of attention at different
Mutual Attention on the baselines models, using the MARS dataset.

Method Feature
Aggregation

mAP Rank 1

Baseline [16] (One Stream) Pooling 75.8 83.1
No Attention (Two Stream) Pooling 76.7 84.3
Gated Attention (One Stream) Pooling 77.4 84.6
Mutual Attention (Two Stream) Pooling 79.1 85.4
Baseline [16] RNN 75.7 82.9
Baseline [16] Temporal Attention 76.7 83.3
Mutual Attention (Mutual Attention)
Shared param

Weighted Addition 76.8 84.1

Mutual Attention (Mutual Attention)
Separate param

Weighted Addition 80.0 86.6
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layers has been presented in the next section. Hence the training setting
have mostly been kept similar to our baselines [16]. In order to explore
the advantage of attention with optical flow, we propose a separate ex-
perimental setup with simple gated attention mechanism i.e. using op-
tical flow to attend to image stream alone. This one stream approach,
where only image features are used for classification while optical
flow is just used as an attention mechanism as described below.

4.2.1. Optical flow estimation
To estimate optical flowmaps for a given sequence, the LiteFlowNet

[22] model has been chosen as it is computationally efficient compared
to other DL models, while obtaining state of the art performance. We
have used the official implementation from the authors to produce
flow maps for MARS, Duke-MTMC, and ILIDS-VID datasets. Hence for a
given sequence, we input pairs of image It−1,It as input to the
LiteFlowNet model to produce flow map F t−1.

4.2.2. Baseline for mutual attention
Given input images, Ic1,Ic2,…,Icn and Fc1,Fc2,…,Fcn flowmaps for images

of a sequence, we extract the features ϕc = (ϕc
1,ϕc

2,…,ϕc
n) and fc = (fc1,

fc2, …,fcn) from the deep CNN and the Flow CNN respectively. A shallow
CNN (Flow CNN) has been used to extract features from optical flow
maps. We rely on shallow CNN to retain spatial coherence in the flow
features (see Fig. 4).

Let l be the intermediate layer of the k layer deep CNN and let the
deep CNN be represented by Hwith a total number of k layers. Let S de-
note the shallow flow feature extractor CNN with t = 1,2,3…n then:

ϕt
c ¼ H Itc

� �
, ftc ¼ S Ftc

� � ð9Þ

If features from layer l are expressed as ψ, then:

ψt
c ¼ Hl I

t
c

� � ð10Þ

The features from Eq. (10) are then pooled in the channel dimension
to produce N × 1 × I × J feature for attention in the spatial dimension.
The features are then activated by an activation function to produce a
spatial soft attentionmap(A(fct)). whereA is the sigmoid activation func-
tion, and ac

t is the output of the activation function. Finally attention is
applied to the intermediate features ψ at an intermediate layer to
obtain activated features Ψ by element-wise multiplication with the
activation ac

t.

Ψt
c ¼ ψt

c⊙atc ð11Þ

After gated attention of features at the intermediate CNN layers, the
feature extraction process is continued with the rest of the CNN layers.
In Eq. (12) l, k represents layers between intermediate layer l and last
layer k. Then, the output ϕc

t of feature extraction is given by,

ϕt
c ¼ Hl,k Ψt

c

� � ð12Þ
Table 3
Accuracy of our proposed Mutual Attention (MA), and baselines with no attention, with avera

No of frames per sequence Baseline [16] RNN Aggrega

Average Pooling No
Attention

MAP Rank 1 mAP

2 71.0 81.8 –
4 75.1 83.2 75.7
6 74.4 82.7 –
8 73.3 82.0 76.2
16 – –

7

ϕc
t is further average pooled in temporal dimension to produce CNN

features for re-identification. The network is trained with classification
layer similar to ourMutual Attention Network. The gated attention net-
work described here served as one of the baselines for flow guided
attention.

4.3. Evaluation measures

During the training phase we learn the ReID task by training a clas-
sifier with identity labels from the single feature extracted for a se-
quence. The feature tractor produces a 2048 × 1 size feature vector
per sequence. This is the input to train the ReID classifier. During the
testing phase, we use the 2048 dimensional feature tomeasure distance
between the test sequence and the sequence from the gallery. We use
the Cumulative Matching Characteristic (CMC) and Mean Average Pre-
cision(mAP) to evaluate the performance. CMC represents thematching
characteristics of the first n query results.

5. Results and discussion

First, this section provides an ablation study the assess the contribu-
tion of different modules to the performance of our proposed model.
This study is performed on a systems using the baseline ResNet50
CNN architecture [16], using temporal pooling for feature aggregation.
We also include an empirical study that allows selecting the deep fea-
ture extraction layer for embedding our attention mechanism, as well
as the sequence length. The overall performance is compared against
the baselines and state-of-the-art methods. We compare the overall
performance on MARS, Duke-MTMC, and ILIDS-Vid dataset.

5.1. Flow guided attention fusion

The first part of ourwork consists of flow guided attention on the in-
termediate layer of the Deep CNN used for feature extraction in ReID.
Our proposed network consists of flow guided attention on an interme-
diate layer of the Deep CNN used for feature extraction. Different layers
in the Deep CNN have different abstraction level for salient features of
the input person image. Hence an experiment was conducted by fusing
the flow guided attention at different layers of the Depp CNN applied on
the baseline [16] ReID system, and evaluated onMARS dataset. From the
Table 1 we conclude that the best performancewas achieved by attend-
ing at layer 4 of the ResNet50 network. This is justifiable from the fact
that earlier layers have different abstraction level for salient features –
the level of abstraction increases in the later layers but, in the last
layer, the spatial coherence is lower than in previous layers. We also
conduct an experiment where we apply our MA to multiple layers of
ResNet50 (namely to layers 2, 3, 4 and 5), and obtained the results
shown in Table 1. It can be observed that multi-layer attention provides
much lower accuracy than expected. This may be due to the attention
from optical flow being sparse, and thus applying them on all layers
drastically reduces the overall number of neurons activated across the
CNN.
ge pooling, and with RNN for different video sequence length on MARS dataset.

tion Ours

Gated Attention
Weighted Addition

Mutual Attention
Weighted Addition

Rank 1 mAP Rank 1 mAP Rank 1

– 77.0 84.0 74.8 82.4
82.9 77.8 84.8 77.7 85.4
– 77.6 84.5 79.2 85.8
82.5 77.3 84.2 79.3 86.4

72.5 82.9 80.0 86.6



Table 4
Accuracy of our proposed vs state-of-the-art methods evaluated on the MARS and Duke-MTMC datasets. Column “Opt. Flow” refers to the use of optical flow as additional inputs.

Method Opt Flow Reference MARS Duke-MTMC

mAP Rank-1 mAP Rank-1

LOMO+SQDA [28] Histogram based No CVPR 2015 16.4 30.7 – –
Set2set [31] Custom Network No CVPR 2017 51.7 73.7 – –
JST RNN [64] CaffeNet No CVPR 2017 50.7 70.6 – –
k-reciprocal [63] ResNet50 No CVPR-2017 58.0 67.8 – –
TriNet [18] ResNet50 No ArXiv 2019 67.7 79.8 – –
RQEN [44] GoogLeNet No AAAI 2018 71.1 77.8 – –
Part-Alignment [47] GoogLeNet No ECCV 2018 72.2 83.0 78.3 83.6
Mask-Guided [43] ResNet50 No CVPR 2018 71.1 77.1 – –
Snippet [6] ResNet50 Yes CVPR 2018 71.1 82.1 – –
STA [15] ResNet50 No AAAI-2019 80.8 86.3 94.9 96.2
RevstTemPool [16] ResNet50 No Arxv 2018 75.8 83.1 – –
Cosam [46] ResNet50 No ICCV 2019 76.9 83.6 93.5 93.7
STAL [7] ResNet-50 No IEEE TIP 2019 73.5 82.2 – –
Cosam [46] SE-ResNet50 No ICCV 2019 79.9 84.9 94.1 95.4
STAR [54] ResNet-50 Yes BMVC 2019 76.0 85.4 –
SCAN [57] ResNet-50 No IEEE TIP 2019 76.7 86.6 – –
SCAN [57] ResNet-50 Yes IEEE TIP 2019 77.2 87.2 – –
GLTR [25] ResNet-50 Yes CVPR 2019 78.5 87 93.7 96.3
M3D [27] ResNet-50 No IEEE TIP 2020 79.46 88.63 93.67 95.49
Rec3D [8] ResNet-50 Yes IEEE TIP 2020 80.4 86.3 – –
MultiGrain [58] ResNet-50 No CVPR 2020 85.9 88.8 – –
Mutual Attention ResNet-50 Yes Ours 80.0 86.6 94.9 95.6
Mutual Attention SE-ResNet-50 Yes Ours 80.9 87.3 94.8 96.7

Table 5
Accuracy of our proposed vs state-of-the-art methods evaluated on the ILIDS-Vid dataset.
“Opt. Flow” refers to the use of optical flow as additional inputs.

Method Opt. Flow Reference Rank 1 Rank 5

Two Stream* [12] Yes ICCV 2017 60.0 86.0
Snippet [6] ResNet50 Yes CVPR-2018 85.4 87.8
RQEN [44] GoogLeNet No AAAI-2018 77.1 93.2
STAL [7] ResNet-50 No IEEE TIP 82.8 95.3
COSAM SE-ResNet50 [46] No ICCV-2019 79.6 95.3
GLTR [25] ResNet-50 Yes CVPR-2019 86.0 –
Rec3D [8] ResNet-50 Yes IEEE TIP-2020 87.9 98.6
Mutual Attention ResNet-50 Yes Ours 86.2 96.4
Mutual Attention SE ResNet-50 Yes Ours 88.1 98.4

Table 6
A comparison of attentionmethods and time complexity (in Flops) of some SOAmethods.

Model Attention Method Optical
Flow

Time
Complexity

Mask Guided [43] Video based + binary segmented mask. No N/A
COSAM [46] Video co-segmentation based No 35 G
GLTR [25] Video Based temporal self attn Yes 60 G
SCAN [57] Video based inter-sequence attn Yes 70 G
STAR [54] Video frame level association based Yes N/A
REC3D [8] 3D attn. by Reinforcement Learning Yes N/A
Snippet [6] Video LSTM based aggregation Yes 60 G
MA (Ours) Two stream mutual attention Yes 58 G
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5.2. Contribution of different modules to the baseline

In this subsection we compare Mutual Attention methods to the
baseline [16] since we follow similar overall system architecture. In
Table 2 we compare the baseline and ours with different feature aggre-
gation methods like Average Pooling, Temporal Attention and our
weighted feature addition method described earlier. We also compare
our Mutual Attention method with single stream with Gated Attention
using optical flow described in the introduction to Experiments section.
We can see that just Gated Attention on its own on the baseline [16] has
8

improved the performances by a large margin on MARS datasets. Our
Mutual Attention method further improved the results compared to
Gated Attention showing the potential of Mutual Attention between
both image and optical flow features. Out Feature addition method
used with Mutual Attention improve the results for feature aggregation
by a larger margin compared to both Average Pooling and aggregation
method fromGated Attention. Table 2 has additional resultswith an ab-
lation study for using shared backbone parameters for the dual stream.
It can be observed from the table that using shared parameters (“shared
param” in table) between optical flow network and ResNet produces
much lower results than using separate parameters (“separate param”
in table). This is because of the deference in the representation space
of both optical flow and image. Although optical flow resembles a sil-
houette of the person image, it lacks many fine grained spatial features
such as intricate shapes and textures that can be seen in the image
space. CNN backbone filters of image based stream tend to learn the dif-
ferent shape and texture information which might not be suitable to
learn optical flow information and vice versa. Thereby using separate
CNNbackboneswould enable each of the backbones to learn idealfilters
for the corresponding input streams.
5.3. Effect of sequence length

The length of the sequence has an effect on the representative power
of final aggregated feature. This in-turn influences the performance of
various feature aggregation methods. Therefore in this subsection we
analyze the effect of sequence length on different feature aggregation
methods such as Temporal Pooling, Flow guided weighted Addition ap-
plied on our method. Hence in Table 3 we have shown results of flow
guided attention on ResNet50 architecture with both the feature aggre-
gation methods. It can be seen that at the sequence length of 4 we ob-
tain ideal results for most methods in the literature as well as for the
simple gated attentionmethod. But ourMutual Attentionmethod dem-
onstrate the ability to aggregate additional features and hence we could
use a sequence of length 16 with Mutual Attention. This is a crucial re-
sult as we demonstrate ability to aggregate additional features and
keep improving results until a sequence length of 16. Longer sequences
have attributed to long term better motion and appearance features. At
the same time in other methods in literature, simple averaging adds



Fig. 5. Visualization of featuremaps produced using bounding box images from theMARS
dataset. The first column shows the original input image, the second column shows
corresponding optical flow, and the third column shows the corresponding activation
maps of our proposed attention. The fourth column shows the activation map for our
baseline, generated by training using our backbone without using the optical flow and
keeping the rest of the setting same.

M. Kiran, A. Bhuiyan, L.T. Nguyen-Meidine et al. Image and Vision Computing 113 (2021) 104246
additional noise to the features with longer sequences. Our weighted
addition methods weights the individual feature based on importance
and relevance thereby reducing noise with longer sequences.
5.4. Comparison with state-of-the-art

Wereport the performance of ourmethodwith backbones ResNet50
and SE-ResNet50 [21] separately with our Mutual Attention and
weighted feature aggregation method on MARS, Duke-MTMC datasets
and ILIDS-VID [53] in the Tables 4 and 5 compared with related works.
Asmentioned earlier we have selected [16] as our baseline. It can be ob-
served that from our baseline. we have improved by a large margin on
9

both mAP and Rank1 metric. Our method has also outperformed
most of the state-f-the-art methods including some of the best
existing methods. We have also shown the advantage of our method
compared to other optical flow based methods [6,54,57]. Although
[29] have demonstrated State-Of-the-Art results, we do not compare
with them as their evaluation strategy is different from that of the
commonly followed method in literature. We attribute our perfor-
mance gain compared to the baseline on both flow guided attention
and our feature aggregation technique. It can also be observed that
from our proposal Mutual Attention method performs best demon-
strating that optical flow and image stream can attend to the salient
regions of each other. Our proposed Mutual Attention method could
be integrated with any back-end architecture from some of the
strong baselines to achieve better performance. Since our main aim
was to evaluate the contribution of Mutual Attention clearly, we
choose a simple baseline [16]. Compared to the results on other
datasets, the margin of improvement is higher with ILIDS-VID dataset
due uniformly centered hand-annotated person cutouts of ILIDS-VID
dataset. Results also suggest that our proposed approach is vulnera-
ble to quality of person detection and tracking.

We compare the complexity and attention method used in recent
SOA methods along with their complexities in GFLOPs (See Table 6). It
can be observed that the complexity of our method is somewhat close
to the other SOA methods although COSAM [46] is more efficient
comparatively.

5.5. Visualization

Fig. 5 shows activations of feature maps from final layer of our back-
bone 2D-CNN feature extractor on some bounding box images from the
MARS dataset. The first columns shows original input image, the second
column shows the corresponding optical flow, the third column shows
activation after our proposed attention. The fourth column shows the
activation map of our baseline that was generated by training our back-
bone without relying on optical flow, but that preserves the other set-
tings. This was chosen as our baseline because the SOA methods use
different backbones and different experimental settings. Our baseline
is similar to [16]. It can be observed from the examples shown in
Fig. 5 that our proposed flow guided mutual attention enhanced the
spatial activations of feature maps based on the optical flow produced
by the virtue ofmotion of persons between different consecutive frames
of the sequence. Using the proposed approach, some additional regions
of the person are activated (corresponding to moving parts), while the
baseline approach only focuses mostly on a potentially discriminant
spatial region.

It can be observed that the overall noise from the background has
been suppressed particularly in the last rowwhere the person is poorly
localized. Fig. 6 shows a tracklet with its activations and the last row
shows single tracklet feature 1) by proposed weighted addition and
2) average pooled. It can be observed that our proposed weighted addi-
tionmethod captures activationwell from salient regions in the tracklet
(Shows a good response for both head and legs compared to average
pooled version).

6. Conclusion

In thisworkwe present a novel framework for flowguided attention
and temporal feature aggregation for Person-ReID. We focus on visual
appearances across spatial and temporal streams and their correlations
to encode common saliency between the streams, reduce background
clutter, learn motion patterns of person and to have the advantages of
having longer sequences. Our feature aggregation method uses cues
from both image and optical flow feature to assign weights and aggre-
gate image instance features to produce a single video feature represen-
tation unlike assigning equalweights to images instances as in temporal
pooling. Our method outperforms the state-of-the-art person reID



Fig. 6. Visualization of features of a tracklet from the MARS dataset and our proposed
weighted addition of the features vs average pooling of the features to extract one
aggregated feature for the tracklet. – The last row shows our proposed weighted
addition for the features of the tracklet, and the average pooled version of the tracklet
above it, respectively.
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methods in terms of bothmAP and Rank1 accuracy evaluated onMARS,
Duke-MTMC, and ILIDS-VID datasets. The proposed Mutual Attention
network is most effective when the person detection and tracking pro-
duces high quality bounding-boxes, and in scenarios with bigger-sized
bounding boxes for objects, where the attention helps in locating the
objects.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.

Acknowledgements

This research was partially supported by the Mathematics of Infor-
mation Technology and Complex Systems (MITACS) and the Natural
Sciences and Engineering Research Council of Canada (NSERC)
organizations.
10
References

[1] E. Ahmed, M. Jones, T.K. Marks, An improved deep learning architecture for person
re-identification, CVPR, 2015.

[2] A. Bhuiyan, Y. Liu, P. Siva, M. Javan, I.B. Ayed, E. Granger, Pose guided gated fusion for
person re-identification, WACV, 2020.

[3] A. Bhuiyan, A. Perina, V. Murino, Person re-identification by discriminatively
selecting parts and features, ECCV, 2014.

[4] A. Bhuiyan, A. Perina, V. Murino, Exploiting multiple detections for person re-
identification, J. Imag. 4 (2018) 28.

[5] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, R. Shah, Signature verification using a
“siamese” time delay neural network, NIPS, 1994.

[6] D. Chen, H. Li, T. Xiao, S. Yi, X.Wang, Video person re-identificationwith competitive
snippet-similarity aggregation and co-attentive snippet embedding, ICCV 2018,
pp. 1169–1178, https://doi.org/10.1109/CVPR.2018.00128.

[7] G. Chen, J. Lu, M. Yang, J. Zhou, Spatial-temporal attention-aware learning for video-
based person re-identification, IEEE Trans. Image Process. 28 (2019) 4192–4205.

[8] G. Chen, J. Lu, M. Yang, J. Zhou, Learning recurrent 3d attention for video-based per-
son re-identification, IEEE Trans. Image Process. 29 (2020) 6963–6976.

[9] W. Chen, X. Chen, J. Zhang, K. Huang, Beyond triplet loss: a deep quadruplet network
for person re-identification, CVPR, 2017.

[10] D. Cheng, Y. Gong, S. Zhou, J. Wang, N. Zheng, Person re-identification by multi-
channel parts-based cnn with improved triplet loss function, CVPR, 2016.

[11] S. Cho, H. Foroosh, Spatio-temporal fusion networks for action recognition, ACCV,
Springer 2018, pp. 347–364.

[12] D. Chung, K. Tahboub, E.J. Delp, A two stream siamese convolutional neural network
for person re-identification, ICCV 2017, pp. 1992–2000, https://doi.org/10.1109/
ICCV.2017.218.

[13] J. Deng, W. Dong, R. Socher, L.J. Li, K. Li, L. Fei-Fei, ImageNet: a large-scale hierarchi-
cal image database, CVPR09, 2009.

[14] M. Farenzena, L. Bazzani, A. Perina, V. Murino, M. Cristani, Person re-identification
by symmetry-driven accumulation of local features, CVPR, 2010.

[15] Y. Fu, X. Wang, Y. Wei, T. Huang, Sta: Spatial-temporal attention for large-scale
video-based person re-identification, AAAI, 2019, 2019, pp. 8287–8294.

[16] J. Gao, R. Nevatia, Revisiting temporal modeling for video-based person reid. arXiv
preprint, arXiv:1805.02104 2018.

[17] X. Gu, B. Ma, H. Chang, S. Shan, X. Chen, Temporal knowledge propagation for
image-to-video person re-identification, ICCV, 2019.

[18] A. Hermans, L. Beyer, B. Leibe, In defense of the triplet loss for person re-
identification. arXiv preprint, arXiv:1703.07737 2017.

[19] R. Hou, B. Ma, H. Chang, X. Gu, S. Shan, X. Chen, Vrstc: Occlusion-free video person
re-identification, CVPR, 2019.

[20] J. Hu, L. Shen, G. Sun, Squeeze-and-excitation networks, CVPR 2018, pp. 7132–7141,
https://doi.org/10.1109/CVPR.2018.00745.

[21] J. Hu, L. Shen, G. Sun, Squeeze-and-excitation networks, Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition 2018, pp. 7132–7141.

[22] T.W. Hui, X. Tang, C.C. Loy, Liteflownet: a lightweight convolutional neural network
for optical flow estimation, CVPR 2018, pp. 8981–8989.

[23] M. Kiran, R.G. Praveen, L.T. Nguyen-Meidine, S. Belharbi, L.A. Blais-Morin, E. Granger,
Holistic guidance for occluded person re-identification. arXiv preprint, arXiv:2104.
06524 2021.

[24] D. Li, X. Chen, Z. Zhang, K. Huang, Learning deep context-aware features over body
and latent parts for person re-identification, CVPR, 2017.

[25] J. Li, J. Wang, Q. Tian, W. Gao, S. Zhang, Global-local temporal representations for
video person re-identification, CVPR 2019, pp. 3958–3967.

[26] J. Li, S. Zhang, T. Huang, Multi-scale 3d convolution network for video based person
re-identification, AAAI 2019, pp. 8618–8625.

[27] J. Li, S. Zhang, T. Huang, Multi-scale temporal cues learning for video person re-
identification, IEEE Trans. Image Process. 29 (2020) 4461–4473.

[28] S. Liao, Y. Hu, X. Zhu, S.Z. Li, Person re-identification by local maximal occurrence
representation and metric learning, CVPR, 2015.

[29] C.T. Liu, C.W. Wu, Y.C.F. Wang, S.Y. Chien, Spatially and temporally efficient non-
local attention network for video-based person re-identification, BMVC, 2019.

[30] H. Liu, J. Feng, M. Qi, J. Jiang, S. Yan, End-to-end comparative attention networks for
person re-identification, IEEE Trans. Image Process. 26 (2017) 3492–3506.

[31] Y. Liu, Y. Junjie, W. Ouyang, Quality aware network for set to set recognition, CVPR,
2017.

[32] C.Y. Ma, M.H. Chen, Z. Kira, G. AlRegib, Ts-lstm and temporal-inception: exploiting
spatiotemporal dynamics for activity recognition, Signal Process. Image Commun.
71 (2019) 76–87.

[34] N.D. McLaughlin, J.M. Rincon, P. Miller, Recurrent convolutional network for video-
based person re-identification, CVPR 2016, pp. 1325–1334, https://doi.org/10.1109/
CVPR.2016.148.

[35] D. Mekhazni, A. Bhuiyan, G. Ekladious, E. Granger, Unsupervised domain adaptation
in the dissimilarity space for person re-identification, European Conference on Com-
puter Vision, Springer 2020, pp. 159–174.

[36] R. Panda, A. Bhuiyan, V. Murino, A.K. Roy-Chowdhury, Unsupervised adaptive re-
identification in open world dynamic camera networks, CVPR, 2017.

[37] X. Qian, Y. Fu, T. Xiang, W. Wang, J. Qiu, Y. Wu, Y.G. Jiang, X. Xue, Pose-normalized
image generation for person re-identification, ECCV, 2018.

[38] R. Quan, X. Dong, Y. Wu, L. Zhu, Y. Yang, Auto-Reid: Searching for a Part-Aware
Convnet for Person Re-Identification, 2019.

[39] E. Ristani, F. Solera, R. Zou, R. Cucchiara, C. Tomasi, Performancemeasures and a data
set for multi-target, multi-camera tracking, ECCVWK, 2016.

http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0005
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0005
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0010
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0010
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0015
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0015
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0020
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0020
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0025
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0025
https://doi.org/10.1109/CVPR.2018.00128
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0035
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0035
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0040
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0040
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0045
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0045
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0050
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0050
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0055
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0055
https://doi.org/10.1109/ICCV.2017.218
https://doi.org/10.1109/ICCV.2017.218
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0065
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0065
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0070
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0070
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0075
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0075
https://arxiv.org/abs/1805.02104
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0085
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0085
https://arxiv.org/abs/1703.07737
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0095
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0095
https://doi.org/10.1109/CVPR.2018.00745
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0105
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0105
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0110
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0110
https://arxiv.org/abs/2104.06524
https://arxiv.org/abs/2104.06524
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0120
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0120
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0125
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0125
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0130
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0130
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0135
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0135
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0140
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0140
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0145
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0145
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0150
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0150
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0155
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0155
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0160
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0160
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0160
https://doi.org/10.1109/CVPR.2016.148
https://doi.org/10.1109/CVPR.2016.148
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0175
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0175
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0175
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0180
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0180
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0185
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0185
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0190
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0190
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0195
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0195


M. Kiran, A. Bhuiyan, L.T. Nguyen-Meidine et al. Image and Vision Computing 113 (2021) 104246
[40] M. Saquib Sarfraz, A. Schumann, A. Eberle, R. Stiefelhagen, A pose-sensitive embed-
ding for person re-identification with expanded cross neighborhood re-ranking,
ICCV, 2018.

[41] J. Si, H. Zhang, C. Li, J. Kuen, X. Kong, A.C. Kot, G. Wang, Dual attention matching net-
work for context-aware feature sequence based person re-identification, CVPR
2018, pp. 5363–5372, https://doi.org/10.1109/CVPR.2018.00562.

[42] K. Simonyan, A. Zisserman, Two-stream convolutional networks for action recogni-
tion in videos, Advances in Neural Information Processing Systems 2014,
pp. 568–576.

[43] C. Song, Y. Huang, W. Ouyang, L. Wang, Mask-guided contrastive attention model
for person re-identification, CVPR 2018, pp. 1179–1188, https://doi.org/10.1109/
CVPR.2018.00129.

[44] G. Song, B. Leng, Y. Liu, C. Hetang, S. Cai, Region-based quality estimation network
for large-scale person re-identification, Proceedings of the AAAI Conference on Arti-
ficial Intelligence, 2018.

[45] C. Su, J. Li, S. Zhang, J. Xing, W. Gao, Q. Tian, Pose-driven deep convolutional model
for person re-identification, ICCV, 2017.

[46] A. Subramaniam, A. Nambiar, A. Mittal, Co-segmentation inspired attention net-
works for video-based person re-identification, ICCV, 2019.

[47] Y. Suh, J. Wang, S. Tang, T. Mei, K.M. Lee, Part-aligned bilinear representations for
person re-identification, ECCV, 2018.

[49] Y. Sun, L. Zheng, Y. Yang, Q. Tian, S. Wang, Beyond part models: Person retrieval
with refined part pooling (and a strong convolutional baseline), ECCV, 2018.

[50] C.P. Tay, S. Roy, K.H. Yap, Aanet: Attribute attention network for person re-
identifications, CVPR, 2019.

[51] P. Turaga, R. Chellappa, A. Veeraraghavan, Advances in video-based human activity
analysis: challenges and approaches, in: M.V. Zelkowitz (Ed.), Advances in Com-
puters, Elsevier 2010, pp. 237–290 , volume 80 of Advances in Computers. URL:
http://www.sciencedirect.com/science/article/ pii/S0065245810800075, doi:doi:
10.1016/S0065-2458(10) 80007-5.

[52] R.R. Varior, M. Haloi, G. Wang, Gated siamese convolutional neural network archi-
tecture for human re-identification, ECCV, 2016.
11
[53] T. Wang, S. Gong, X. Zhu, S. Wang, Person re-identification by video ranking, ECCV,
688–703, Springer, 2014.

[54] G. Wu, X. Zhu, S. Gong, Spatio-temporal associative representation for video person
re-identification, BMVC 2019, p. 278.

[55] Y. Wu, Y. Lin, X. Dong, Y. Yan, W. Ouyang, Y. Yang, Exploit the unknown gradually:
One-shot video-based person re-identification by stepwise learning, 2018 CVPR.

[56] D. Yi, Z. Lei, S. Liao, S.Z. Li, Deep metric learning for person re-identification, ICPR,
2014.

[57] R. Zhang, J. Li, H. Sun, Y. Ge, P. Luo, X. Wang, L. Lin, Scan: self-and-collaborative at-
tention network for video person re-identification, IEEE Trans. Image Process. 28
(2019) 4870–4882.

[58] Z. Zhang, C. Lan, W. Zeng, Z. Chen, Multi-granularity reference-aided attentive fea-
ture aggregation for video-based person re-identification, Proceedings of the IEEE/
CVF Conference on Computer Vision and Pattern Recognition 2020,
pp. 10407–10416.

[59] H. Zhao, M. Tian, S. Sun, J. Shao, J. Yan, S. Yi, X.Wang, X. Tang, Spindle net: person re-
identification with human body region guided feature decomposition and fusion,
CVPR, 2017.

[60] L. Zhao, X. Li, Y. Zhuang, J. Wang, Deeply-learned part-aligned representations for
person re-identification, CVPR, 2017.

[61] L. Zheng, Z. Bie, Y. Sun, J. Wang, C. Su, S. Wang, Q. Tian, Mars: a video benchmark for
large-scale person re-identification, European Conference on Computer Vision,
Springer 2016, pp. 868–884.

[62] L. Zheng, Y. Huang, H. Lu, Y. Yang, Pose invariant embedding for deep person re-
identification. arXiv preprint, arXiv:1701.07732 2017.

[63] Z. Zhong, L. Zheng, D. Cao, S. Li, Re-ranking person re-identification with k-
reciprocal encoding, CVPR, 2017.

[64] Z. Zhou, Y. Huang, W.Wang, L.Wang, T. Tan, See the forest for the trees: joint spatial
and temporal recurrent neural networks for video-based person re-identification,
CVPR 2017, pp. 6776–6785, https://doi.org/10.1109/CVPR.2017.717.

http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0200
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0200
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0200
https://doi.org/10.1109/CVPR.2018.00562
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0210
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0210
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0210
https://doi.org/10.1109/CVPR.2018.00129
https://doi.org/10.1109/CVPR.2018.00129
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0220
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0220
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0220
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0225
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0225
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0230
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0230
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0235
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0235
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0245
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0245
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0250
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0250
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0255
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0255
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0255
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0255
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0255
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0260
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0260
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0265
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0265
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0270
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0270
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0275
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0275
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0280
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0280
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0285
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0285
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0285
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0290
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0290
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0290
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0290
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0295
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0295
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0295
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0300
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0300
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0305
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0305
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0305
https://arxiv.org/abs/1701.07732
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0315
http://refhub.elsevier.com/S0262-8856(21)00151-7/rf0315
https://doi.org/10.1109/CVPR.2017.717

	Flow guided mutual attention for person re-�identification
	1. Introduction
	2. Related work
	2.1. Image-based person-ReID
	2.2. Video-based person-ReID
	2.3. Attention mechanisms
	2.4. Optical flow as temporal stream

	3. Proposed mutual attention network
	3.1. Mutual attention
	3.2. Weighted feature addition

	4. Experimental methodology
	4.1. Datasets
	4.2. Settings
	4.2.1. Optical flow estimation
	4.2.2. Baseline for mutual attention

	4.3. Evaluation measures

	5. Results and discussion
	5.1. Flow guided attention fusion
	5.2. Contribution of different modules to the baseline
	5.3. Effect of sequence length
	5.4. Comparison with state-of-the-art
	5.5. Visualization

	6. Conclusion
	Declaration of Competing Interest
	Acknowledgements
	References




