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Video-based re-identification (ReID) is a crucial task in computer vision that draws increasing attention due to
advances in deep learning (DL) and modern computational devices. Despite recent success with CNN architec-
tures, single models (e.g., 2D-CNNs or 3D-CNNs) alone failed to leverage temporal information with spatial
cues. This is due to uncontrolled surveillance scenarios and variable poses leading to inevitable misalignment
of ROIs across the tracklets, which is accompanied by occlusion and motion blur. In this context, designing tem-
poral and spatial cues for two differentmodels and their combinations can be beneficial, considering the global of
a video-tracklet. 3D-CNNs allow encoding of temporal information while 2D-CNNs extract spatial or appearance
information. In this paper, we propose a Spatio-Temporal Cross Attention (STCA) network to utilize both 2D-
CNNs and 3D-CNNs that calculate the cross attention mapping both from the layer of 3D-CNNs and 2D-CNNs
along a person's trajectory to gate the following layers of 2D-CNNs; and highlight relevant appearance features
for the person ReID. Given an input tracklet, the proposed cross attention (CA) is able to capture the salient re-
gions that propagate throughout the tracklet to obtain the global view. This provides a spatio-temporal attention
approach that can be dynamically aggregatedwith spatial features of 2D-CNNs to perform finer-grained recogni-
tion. Additionally, we exploit the advantage of utilizing cosine similarity while triplet sampling as well as for cal-
culating thefinal recognition score. Experimental analyses on three challenging benchmark datasets indicate that
integrating spatio-temporal cross attention into the state-of-the-art video ReID backbone CNN architecture
allows for improving their recognition accuracy.

© 2022 Elsevier B.V. All rights reserved.
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1. Introduction and motivation

Person Re-Identification (ReID) is the task of associating people
across a set of non-overlapping camera viewpoints. It has drawn much
attention from the computer vision community due to its vast applica-
tion area, ranging from video surveillance to sports analytics. Much
progress has been made in developing successful deep learning (DL)
[1–11], yet it consists of a challenging task due to the nonrigid structure
of the human body, different viewpoints, and poseswithwhich a pedes-
trian can be observed, occlusion, and misalignment issues.

Existing ReID techniques can be categorized into two categories:
image-based ReID [1–4,6–8,12–14] and video-based ReID [15–24]. In
the former case, query images (still) of different individuals are
matchedwith the gallery images (still) without considering the tempo-
ral information. In video-based ReID settings, a person's small input
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video sequence (i.e., tracklet) is matched against the gallery of small
video sequence (i.e., tracklet) representations that consider the tempo-
ral aspect of different time steps. In image-based ReID setting, state-of-
the-art approaches [1,6–8,12–14] mostly rely on appearance-based fea-
tures that capture only the color or texture of the clothes. Relying only
on appearance features might harm the recognition accuracy due to
misaligned bounding boxes or occlusions. In contrast, by taking video
sequence as input, the video-based ReID setting has the advantage of
having additional information, which allows the exploitation of spatio-
temporal information for precise, comprehensive and discriminative
feature embedding from a global point of view.

Most of the video-based ReID approaches model the temporal rela-
tion by employing 3D-CNNs [18,20,22], temporal pooling [15], temporal
attention [15], spatio-temporal attention mechanism [16,21,23–26].
Most of these approaches treat the video-based ReID problem as other
video-based computer vision tasks (e.g., action or activity recognition)
by ignoring the fact that video clips in ReID consist of a sequence of con-
secutive bounding boxes (i.e., region of interests (ROIs)) produced by a
person detector, not the original video frames of the whole captured
scene. The inefficiency of the person detection algorithms lead to
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Fig. 1. Examples of themisalignment challenge characterizing person re-identification over two camera viewpoints from theMARS dataset. Each row represents the bounding boxes from
the same individual. The first four columns of each row are from the same tracklet capturedwith the first camera ‘X’while the remaining four columns are from another tracklet captured
with the second camera‘Y’.
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extracting smaller or bigger bounding boxes compared to the ground
truth as depicted in Fig. 1, known as misalignment issues. The sources
of misalignment generate both from spatial and temporal issues [22].
It is apparent from Fig. 1 and the statement from the appearance pre-
serving approach [22] that inherent challenges such as pose or view-
point variations may lead to spatial misalignment issues. There are
cases when a probe image with a certain alignment is matched with a
gallery of different images with different alignments, leading to a low
recognition score. In temporal misalignment issues, the same spatial lo-
cations in consecutive frames from different body parts and the same
body parts in adjacent frames may be scaled to different sizes. In such
cases, using only simple temporal pooling as a feature aggregation tech-
nique may lead to poor recognition accuracy. Temporal information ex-
tracted using only 3D-CNNs in such scenarios may destroy the
appearance representations.

There are a number of state-of-the-art ReID approaches that deal
with misalignment issues by deploying either attention mechanisms
[21,25,26] or preserving the appearance of 3D-CNNs [22]. Relying only
on single 2D-CNNs, most of the attention guided video ReID approaches
[21,25,26] model the attention in a 2D fashion where the output of 2D-
CNNs layers are transformed through an external module (i.e., pose [7]
and segmentation network [25]) to yield the final attention map. Yet,
they failed to capture common or global temporal attention that is uni-
form throughout the tracklet. There have been some attempts to lever-
age spatio-temporal attention [16,24,27] for video-based ReID that
model the spatial and temporal attention separately and sequentially
using complex dedicated structures. However, they ignore the effect of
learning temporal attention that provides a global view of a tracklet
while calculating spatial attention. The extracted feature embedding in
a such scenario suffers from the issue of accurately positioning the fea-
ture saliency considering the degree of redundancy present in the entire
tracklet. Thus, a dynamic model is expected that can jointly learn the sa-
lient levels of each spatio-temporal feature from the global point of view.

Within this context, we propose a STCA framework that utilizes both
2D-CNNs and 3D-CNNs for generating cross guided global spatio-
temporal attention maps from the global point of view to deal with
2

spatial and temporal misalignment issues, respectively. In this context,
an important research query is how andwhere to combine both feature
representations. To answer this query, we propose to use the cross at-
tention approach by processing the outputs from the same
convolutional layer of 3D-CNNs and 2D-CNNs to gate the output of
2D-CNN backbone layers. The proposed STCA approach comprises two
parallel streams, a backbone 2D-CNNs to learn spatial appearance infor-
mation and a 3D-CNNs to model the temporal information for ReID.
These streams are combined using the cross attention network to
learn spatio-temporal attention into the metric learning process. The
proposed cross attention network jointly learns the feature embedding
that relies on a simple cross attention mechanism that allows for multi-
plicative interaction between the 2D input features and cross attention
map, providing a dynamic selection of consistent filters throughout an
input tracklet. Dynamic selection of the discriminant filters initiated
through cross attentionmechanisms avails the 2D backbone to perform
fine-grained recognition which in turn helps to address the misalign-
ment issues. Most of the attention networks for ReID approaches
[7,16] apply the attention map into the later parts of the backbone net-
work that raises an important research question about the most rele-
vant layers for application of the attention map. There are a few
approaches in ReID [14,25] to exploit the advantage of fusing mid-
level or contextual feature (i.e. pose [14] and segmentation mask [25])
into the mid-level layers. Unlike these approaches [14,25], we propose
using cross attention map to gate the mid-level layer of the 2D-CNN
backbone layer that provides back-propagated gradients corresponding
to the amplified local similarities across the tracklets.

The DL frameworks for most of the state-of-the-art video ReID ap-
proaches [15,16,22,24] are optimized using the combination of triplet
loss and classification loss. It is of utmost importance mining proper
triplet samples to obtain faster convergence and better recognition ac-
curacy. State-of-the-art video ReID [6,15,16,22] approaches relied on
Euclidean distance for sampling batch-hard positive and negative min-
ing that failed to obtain faster convergence and better recognition accu-
racy. Unlike those approaches [6,15], we rely on cosine distance for
mining semi-hard positive and negative samples in a batch.
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The contribution of this paper is three-fold:

(1) We propose a novel DL framework (STCA) that includes both 2D-
CNNs and 3D-CNNs for generating cross guided global spatio-
temporal attention maps for gating 2D-CNN backbones in
video-based ReID. Given an input tracklet, it allows leveraging
common salient features consistent throughout space and time,
thereby mitigating the spatio-temporal misalignment issue.

(2) We exploit the advantage of using cosine distance while mining
positive and negative samples for semi-hard triplet sampling.
Given an anchor in a batch, finding the furthest sample as hard
positive and the closest sample as hard negative using Cosine dis-
tance for triplet sampling leads to faster optimization and better
recognition accuracy.

(3) We conduct an extensive experimental analysis to validate the
proposed approach on three video-based ReID datasets, allowing
us to conclude that our cross attention between 2D- and 3D- into
2D-CNN backbone can outperform most of the state-of-the-art
methods for video ReID.
The code to reproduce the results of this paper is published on
GitHub.1

2. Related work

There are a large number of studies on the topics of ReID
[1,8,13,14,28–33] both in image-based and video-based setting. Here
we mainly review the work about video-based ReID, which is the
most related to our research presented in this paper.

2.1. Video-based ReID

Since the advancement of modern computational infrastructure,
video-based ReID attracted much attention as modeling the temporal
information allows the model to deal with the issues such as occlusion,
background noise andmisalignment. A common practice for video ReID
is a two steps process: extracting feature embedding from each frame
and then aggregating the embeddings of all the frames in a tracklet
using temporal average/max-pooling [7,15,34]. There have been a few
attempts [35,36] to characterize the temporal variations of each time-
step. In [35], a variant of RNN is proposed, which is followed by tempo-
ral pooling to produce the final feature representation of a given
tracklet. Following the same pipeline, a LSTM network is proposed
in [36] to aggregate the features that obtain a sequence level feature
representation. Similarly, a RNN based approach is proposed in [37] to
combine a motion context with the corresponding appearance repre-
sentations. Recent success in other video-related tasks (such as action
recognition) with 3D-CNNs has prompted the ReID community to
apply it for video-based ReID [18,20,22]. In this context, the spatio-
temporal representation learnedwith a 3D-CNN has been concatenated
with appearance representation with 2D-CNN [20]. In a similar fashion,
3D-CNNs [18] have been combined with non-local blocks for spatio-
temporal attention, allowing to model the long-range dependencies
[38]. More recently, a 3D-CNN based robust appearance preserving ap-
proach [22] is proposed to deal with the misalignment issues at the
pixel level. However, all of the approaches mentioned above process
the features with the same importance even using a single CNN though
the features for different spatial and temporal positions have different
levels of significance in video-based person ReID.

2.2. Attention based video ReID

The task of attention-based approaches is to highlight the local re-
gions to extractmore discriminative features. Similar to other computer
vision applications, it has achieved great success in video ReID as well.
1 Code available at: https://github.com/mdamranhossenbhuiyan/STCA.
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State-of-the-art attention base video ReID [16,21,27,39] can be catego-
rized into two approaches. One category of attention mechanism relies
on the relative distance of consecutive frames [19,40,41]. In this cate-
gory [19,41], authors have proposed using matching a given probe se-
quence against all gallery sequences based on a distance measure with
temporal attention weights. Similarly, inter-and intra-tracklet level
comparisons are performed in [40] to design dual attention mecha-
nisms. However, such distance-based attention mechanisms become
impractical when the number of gallery instances grows since they cal-
culate each gallery's different features w.r.t. a given probe instance. On
the other hand, in the second category of attention mechanism, one se-
quence doesn't depend on other sequences to calculate the attention
map [16,21,24,42–48]. In this case, for each frame, there is a learned
quality score from the quality-aware network [49] before aggregating
them into the final feature representations of a given sequence.
Similarly, Zhou et al. [50] learn temporal attention to exploit the feature
importance of each frame and update it using a RNN.With the attribute-
driven weighing mechanism, the authors [39] leverage attention
weighing that is driven by a confidence score on the attribute recogni-
tion. Nonetheless, all these approaches rely entirely on temporal atten-
tion by ignoring the importance of using spatial attention. There have
been a few attempts to learn spatio-temporal attention using the
same output of the 2D-CNN or the 3D-CNN backbone where attention
is learned as prior knowledge, although that limits their use in optimiza-
tion problems [16,21,24,42–48]. Using a single 2D-CNN back to learn
both the spatial and temporal attention separately or sequentially
[16,21,24,42–44,48] hinders the process of exploiting mutual benefits
between spatial and temporal features during optimization. Recently,
there has been an attempt to use the optical flow that is fused with ap-
pearance cues in amutual fashion [23]. However, using optical flow as a
parallel streamwith the same importance as RGB-stream [23] is less ef-
fective as optical flow only illustrates coarse semantic features of mov-
ing objects, and thus not compatible while treating equally with RGB-
like appearance feature for recognition.

Different from all the above approaches, we proposed a STCA frame-
work that generates cross attention by taking the input from the com-
mon layer of 3D-CNN and 2D-CNN to gate the feature representations
into the following layers of 2D-CNN. Focusing on the state-of-the-art
DL framework, the proposed cross attention learns the global spatio-
temporal attention for a given tracklet, enabling the 2D backbone to
pay more attention to the common salient feature representations con-
sistent throughout the tracklet.

3. Our proposed approach

This section describes the proposed STCA framework that generates
spatio-temporal cross attention maps to guide the output of 2D-CNN
backbone layers for video ReID. Fig. 2 illustrates the layout of the pro-
posed model. It consists of three blocks: a 2D-CNN backbone, 3D-CNN
temporal backbone, and a cross attention module. All these three com-
ponents are jointly trained end-to-end in a single step. Given an input
tracklet, the features produced by the 2D-CNN and 3D-CNN layers are
used by the attention network to guide the following layer of the
2D-CNN backbone so that it could dynamically select the most discrim-
inant convolutional filters from the backbone to ensure fine-grained
recognition.

3.1. Backbone 2D-CNN architecture

As appearance based feature representation plays a key role in the
recognition process, choosing a 2D-CNN is vital. There are a number of
2D-CNN architectures such as: VGG [51], ResNet [5], ResNet-IBN [52],
SE-ResNet [53], and Inception [54]. Among them, ResNet [5] and its var-
iants are commonly used for the application of ReID. The idea of using
skip connection in ResNet [5] allows propagating the original input
data as deep as possible through the network while addressing the
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Fig. 2. Proposed STCA network architecture for video person ReID. The 3D-CNN learns the spatio-temporal featureswhile 2D-CNN learns appearance features. The cross attention network
uses these features to dynamically select the relevant 2D-CNN appearance features. It allows the 2D-CNN backbone to learn common salient appearance cues for the embedding space
across a tracklet.
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issues of vanishing gradient in VGG [51]. The combination of deeper ar-
chitecture due to skip connection aswell as the ensemble nature ofmul-
tiple staked convolutional blocks in ResNet [5] assist the network to
learn robust feature embedding for higher recognition accuracy. All of
ResNet variants comprise multiple convolutional blocks, for example
ResNet [5] architecture is divided into one convolutional block named
conv1- C1, followed by four residual blocks named conv2_x - C2,
conv3_x - C3, conv4_x - C4 and conv5_x - C5, respectively, as shown in
the backbone network structure of Fig. 2. Fragmented architectures of
this kind allow us to analyze layer-wise feature representations.

Given an input tracklet (set of bounding boxes extracted from a
tracklet, Tk) represented by Ip1,Ip2, …,Ipt where p indicates the identity of
the video sequence of length t, the backbone 2D-CNN, Φ computes the
appearance features, FAl , which is the output of the l-th layer of the back-
bone network for the batch of input images, Ip:

FlA ¼ Φl Ip
� � ð1Þ

where Φl is the appearance feature extractor until l-th layer define as
Φl : Ip → FAl , Ip ∈ ℝb×3×h×w, FAl ∈ ℝb×cl×h′×w′, and b = p × t being the
batch size, h, and w being the height and width of an input image and
h′, w′, cl being the height, weight and channel number of attention
map size of the l-th layer. Reshaping the batch dimensions b into P
and twill provide the feature representationswith temporal dimension,
FAl ∈ ℝp×t×cl×h′×w′.

3.2. 3D-CNN architecture

A cross attention network typically receives two signals: one from
2D-CNN and another from 3D-CNNs. 2D-CNN typically extracts
appearance-based spatial features while 3D-CNN encodes temporal in-
formation. Therefore, choosing an efficient 3D-CNN is also important for
our proposed approach. Several commonly used 3D-CNN architectures
are C3D [55], I3D [56] and 3D-ResNet [57] that can be employed to
model the temporal variations. One group of 3D-CNN designs the
convolutional network [55,57] with a filter kernel of size 3 × 3 × 3. An-
other group of 3D-CNN turns a pre-trained 2D Network architecture to
3D-CNNby inflating all thefilters and pooling kernelswith an additional
temporal dimension. One of the above-mentioned 3D-CNN architec-
tures can be used to get the temporal features and thus can be used as
the input of the cross attention network.
4

In our approach, the input of 3D-CNN is the same batch of the back-
bone architecturewith the same size but different shape as it takes tem-
poral or tracklet, Tk information into account in the additional
dimension. The 3D-CNN, Ψ computes the temporal variations, Pt

l,
which is the output of the l-th layer of the backbone network for the
batch of input tracklets, Tk:

FlT ¼ Ψl Tkð Þ ð2Þ

where, Ψl is the temporal feature extractor until l-th layer define as
Ψl : Tk → FTl , Tk ∈ ℝp×t×3×h×w, FTl ∈ ℝp×cl×h′×w′, where b = p × t is the
batch size, h, and w is the height and width of an input image and h′,
w′, cl being the height, weight and channel number of attention map
size of the l-th layer.

3.3. Cross attention network

The Cross attention network utilizes both the 2D-CNN and 3D-CNN
stream that attends each other to obtain the semantic relevance that en-
ables the 2D-CNN backbone to learn the common salient features con-
sistent throughout the sequence of a given tracklet. The proposed
network is inspired by the cross-attention approach [58] that has been
adapted for the application of video ReID.

As shown in Fig. 3, the cross attention network takes two inputs: ap-
pearance features, FSl from the l-th layer of backbone architecture and
the temporal features, FTl from 3D-CNN. This module generates the
cross attention map AS for FSl , which is then used to weight the feature
map into the following layer of the 2D-CNN to achieve a more discrim-
inative feature representation Fm. For simplicity, we ignore subscript
and superscript and denote the 2D-CNN and 3D-CNN feature maps as
FS and FT.

Firstly, we devise a correlation layer to calculate a correlation be-
tween FS and FT to guide the generation of cross attention maps. To do
this, we first reshape the FS and FT to ℝb×cl×k, where k = h′ × w′ is the
number of spatial and temporal locations for FS and FT, respectively.
Then, we calculate the cosine distance between each point of the
spatial location of FS with all the points of the temporal locations of FT
that gives us the spatial correlation map, Rs ∈ ℝk×k. Rs represents the
local correlations between the feature maps of 2D-CNN and 3D-CNN.
Then, a convolutional operation is performed on Rs with a k × 1
kernel, w ∈ ℝk×1 to fuse each local correlation vector. w plays a vital



Fig. 3. A schematic illustration of the cross attention network.
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role as it aggregates the correlation between FS and FT. To learn it
adaptively, we apply RELU to introduce non-linearity in the learning
that allows flexible transformation, followed by a convolutional opera-
tion and row-wise averaging. The resultant output is passed through a
softmax function to normalize it to obtain the final attention map AS.

In a similar fashion, we can obtain AT. A residual attention mecha-
nism is applied both for AS and AT, where the initial feature maps FS
and FT are element-wisely weighted by 1 + As and 1 + AT

respectively to obtain cross attended feature, Fml to gate the following
2D-CNN layers. In addition to the learned attention, the residual mech-
anism enables the network to focusmore on semantically important re-
gions and thus improves its ability for discriminative representation.
This in turn helps to address the issue of misalignment.

3.4. Network loss with cosine distance

Most of the state-of-the-art video ReID approaches [15,16,20,22] op-
timize their proposed framework using the combination of triplet and
identity loss. Unlike those, our proposed STCA framework is trained
with the techniques adopted in the bag-of-trick(BOT) [8] approach
that combines triplet loss, center loss, and identity (ID) loss with label
smoothing. For a given mini-batch of input tracklets, the total loss can
be written as:

L ¼ Ltriplet þ LJD þ βLcenter ð3Þ

where, Ltriplet, LJD, and Lcenter denote the triplet loss, ID loss, and center
loss, respectively. β is the weight of the center loss that balances it with
other losses. Following BOT [8], we set β is set to 0.0005.

As a triplet loss, we utilize widely used hard triplet mining in a
mini-batch [6], the task of which is to find hard positive and negative
to form a triplet during the training process. As pointed-out by
Hermans et al. [6], in a mini-batch, optimizing the network for
similarly-looking individuals but different identities (hard negative)
or different-looking individuals but the same identity (hard posi-
tives) learns to distinguish better than randomly chosen triplet sam-
pling from the whole dataset. For each sample in a mini-batch, it
selects the furthest positive sample as the hard positive and the clos-
est negative sample as hard negative samples within the batch using
Euclidean distance when forming the triplets for computing the loss.
Different from their approach [6], the proposed STCA approach
utilizes the cosine distance, d, while forming triplet which can be
formulated as:

Ltriplet ¼
1
Ns

∑
Ns

a¼1
mþ max

yp¼ya½ �
d fta, ftp
� � � min

yp≠ya½ �
d fta, ftnð Þ

" #
þ

ð4Þ

where, [.]+ = max (.,0), m denotes a margin, Ns is the set of all hard
triplets considering cosine distance, d, within a batch. fta, ftp and ftn
denote the feature representations of the anchor, positive and
negative samples with their labels ya, yp and yn, respectively.
5

To characterize the intra-class variations, minimizing the center loss
[59] has proven to be effective that penalizing the distances between
the deep features and their corresponding class center. In this way, it
helps to regularize the triplet loss so that it doesn't overfit the training
ID The center loss can be formulated as:

Lcenter ¼ 1
2
∑
N

j¼1
‖ftj � cyj‖

2
2 ð5Þ

where, yj is the label of the j-th image in a mini-batch. cyj denotes the yj
th class center of extracted features. N is the number of samples in the
batch.

To prevent the ReIDmodel from overfitting training IDs, integration
of label smoothing (LS) [60] into ID loss is a widely used technique.
Given an image of an individual with a true ID label, y and pi as ID pre-
diction logits of class i, ID loss can be written as:

LID ¼ ∑
N

i¼1
� qi log pið Þ ð6Þ

where LS construction of qi is:

qi ¼ 1 � N � 1
N

ε, if i ¼ y
�

ε
N
, otherwise ð7Þ

where, ε is a constant to force the model to be less confident on the
training set. Following the BOT [8] approach, ε is set to be 0.1. For small
datasets with fewer IDs, LS has proven to be effective in improving the
model's performance.

4. Experimental methodology and result analysis

4.1. Datasets

The proposed STCA framework is evaluated on 3 challenging bench-
mark datasets: MARS [61], DukeMTMC-VideoReID [62], iLIDS-VID [63].
MARS [61] is one of the largest sequence-based person ReID datasets
that consists of 1261 identities and 20,478 video sequences, with multi-
ple frames per person captured across 6 non-overlapping camera views.
Following the state-of-the-art techniques [15,16,25,61], 625 identities
are used for training, and the remaining are used for testing.
DukeMTMC-VideoReID [62] contains 4832 tracklets from 1812 identi-
ties captured across 8 synchronized cameras with a standard train/test
protocol where 702 identities are used for training, 702 for testing and
remaining 408 identities are distractors. iLIDS-VID [63] is a smaller
dataset with 600 tracklets of 300 identities from two non-overlapping
camera views. We followed the test protocol of [15,22,25,63] and 10
random probe-gallery splits are used to perform experiments.



Table 1
Accuracy of the proposed STCA and state-of-the-art methods on MARS, Duke:
DukeMTMC-Video, and iLIDS: iLIDS-VID datasets.

Method MARS Duke iLIDS

mAP rank-1 mAP rank-1 rank-1

CNN + XQDA [61] 47.6 65.3 – – –
TriNet [6] 67.7 79.8 – – –
Part-Alignment [7] 72.2 83.0 78.3 83.6 –
Mask-Guided [9] 71.1 77.1 – – –
Snippet [19] 71.1 82.1 – – 85.4
RevisitTemPool (Baseline) [15] 75.8 83.1 – – –
M3D [20] 74.1 84.4 – – 74.0
coSAM (SE-ResNet50) [25] 79.9 84.9 94.1 95.4 –
STA [16] 80.8 86.3 94.9 96.2 –
AttDriven [39] 78.2 87.0 – – 86.3
GLTR [70] 78.5 87.3 93.7 96.3 86.0
Mutula Attention [23] 80.9 87.3 94.8 96.7 –
VRSTC [17] 82.3 88.5 93.5 95.0 83.4
NVAN [66] 82.8 90.0 94.9 96.3 –
AP3D [22] 85.1 90.1 95.6 96.3 86.7
MG-RAFA [21] 85.9 88.8 – – –
I2GNN [67] 86.3 89.1 – – –
STCAN [24] 84.5 88.9 – – –
BiCnet-TKS [68] 86.0 90.2 96.1 96.3 –
STMN [69] 84.5 90.5 95.2 97.0 –
STCA (Ours) 87.0 90.3 96.2 96.6 88.3
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4.2. Network architecture

Our proposed approach is evaluated by resizing all the images to
384 × 128 and 256 × 128. Although the proposedmethod can integrate
a wide range of feature extractors, we choose the ResNet50-IBN [52]
architectures as the backbone 2D-CNN due to their popularity in re-
identification. However, we considered two modifications to adapt
them for aligned feature representation. The quality of aligned features
heavily relies on a sufficient resolution for the final activation. Thus we
changed the stride of the last convolutional layer of all the backbone
2D-CNNs from 2 to 1. Then, the final layer is removed to provide a
2048-dimension feature representation. To remain consistent with the
feature resolutions, we choose ResNet3D-50 [57] architecture as the
3D feature extractor. The ResNet50-IBN backbone and ResNet3D-50
networks are initially pretrained on ImageNet [64] and Kinectics [65]
datasets, respectively. The cross-attention network is training from
scratch which is randomly initialized from Gaussian distribution. The
batch size is 32 that includes 8 identities with 4 video sequences. As
for the optimizer, we use the Adam optimizer with weight decay
0.0005 was adopted to update the parameters for the optimizer. The
learning rate is initialized to 3.5 × 10−4 and multiplied by 0.1 after
every 10 epochs.
4.3. Performance measures

The proposed STCA model is evaluated for its ability to provide dis-
criminant feature embeddings for accurate pairwise matching (with a
Siamese network). Features extracted from query and gallery images
Table 2
Influence of varying resolutions on MARS dataset.

Method 256 × 128

mAP r

3D-CNN [17] 70.5 7
3D-CNN with Cosine 75.2 8
2D-CNN [17] 75.8 8
2D-CNN with Cosine 81.3 8
Concatenate(2D-CNN,3D-CNN) with Cosine 81.9 8
STCA with Cosine 84.9 8
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for all the tracklets are averaged to get a single feature vector for each
tracklet and then compared through pairwise matching. The similarity
between each pair of feature embeddings is measured using cosine dis-
tance. For each query image, all gallery images are ranked according to
the similarity between their embeddings in cosine space, and the most
similar gallery image label is returned. All the experiments are imple-
mented in PyTorch. Following the common trend of evaluation
[15,16,22], we measure the rank-1 accuracy of cumulative matching
characteristics (CMC), and the mean average precision (mAP) to evalu-
ate our proposed and baselinemethods. The CMC represents the expec-
tation of finding a correct match in the top n ranks.
4.4. Comparison with state-of-the-art methods

This experiment aims to compare our proposed STCA approachwith
state-of-the-art methods. We compare with relevant models for video
ReID, including alignment-based models: AP3D [22], Mask Guide [9],
coSAM [25] and Part-Alignment [7]; attention guided models: STA
[16], RevisitTemPool [15], VRTC [17], NVAN [66], MG-RAFA [21],
AttDriven [39], I2GNN [67], STCAN [24], BiCnet-TKS [68], STMN [67]
and others on MARS, Duke-MTMC and iLIDS-VID datasets. Table 1 re-
ports the comparison of our proposed STCA approach with most of the
state-of-the-art approaches (see Table 1). The following observations
can be made: i) the proposed STCA framework for video ReID consis-
tently outperforms all compared state-of-the-art methods on all
datasets in mAP measures, which is a more comprehensive measure-
ment to explain the overall effectiveness of an approach while the
dataset has multiple ground-truths for each query. Although the
STMN [69] approach obtains state-of-the-art performance in rank-1
measurement, the significant performance drop (2.5% and 1.0% on
MARS and DukeMTMC-Video, respectively) inmAPmeasurement com-
pared to our proposed STCA approach. Similar observations can be
made on BiCnet-TKS [68], STCAN [24], I2GNN [67], and AP3D [22]
while drawing a comparison with our STCA approach. ii) Among all
the alternatives, STMN [69] obtains a strong performance on rank-1
which shows a marginal performance gap (0.2% and 0.4% on MARS
and DukeMTMC-Video dataset, respectively) with our STCA approach.
This may be because STMN adopts a complex LSTM based memory
module for focusing on discriminative frames and achieving high per-
formance on rank-1. iii) On the iLIDS-VID dataset, we outperformed
all the considered state-of-the-art in rank-1 accuracy. This might be
due to the availability of numerousmisalignment data due to the severe
viewpoint variations across camera views, cluttered background and
random occlusions. iv) The performance of state-of-the-art methods
varies significantly depending on their backbone networks and the
different mechanisms they rely on. Compared to the baseline
RevisitTempool [15], on which we apply our STCA approach, we are
outperforming by 11.2% in mAP and 7.2% in rank-1 measures. Similar
observation can be made for CNN + XQDA [61], TriNet [6], Mask
Guide [9], coSAM [25], Part-Alignment [7], STA [16], RevisitTemPool
[15], VRTC [17], NVAN [66], MG-RAFA [21], AttDriven [39], compare to
which our STCA approach significantly outperformed. Nevertheless,
our proposed approach consistently outperforms the other state-of-
384 × 128

ank-1 mAP rank-1 epoch

8.1 73.5 81.3 ≈ 800
3.6 77.2 85.9 ≈ 500
3.1 77.4 84.5 ≈ 800
7.1 82.2 87.9 ≈ 500
6.9 83.1 86.6 ≈ 500
9.1 87.0 90.3 ≈450



Table 3
Accuracy of the proposed approach using ResNet50-IBN with ensembling versus the
sequence length on the MARS dataset.

Frame Length Accuracy

mAP rank-1 rank-5 rank-10

2 86.5 89.4 97.4 97.8
4 87.1 90.1 97.6 98.3
6 87.0 89.9 97.8 98.3
8 87.0 90.3 97.6 98.2
10 86.7 89.6 97.7 98.2
12 86.5 89.5 97.4 98.2

Table 4
Influence of different distance measures for triplet sampling (Trip. Samp.) and similarity
score (Sim. Scr.) measurement using our proposed STCA approach.

Trip. Samp. Sim. Scr. MARS iLIDS-VIS

mAP rank-1 rank-1

Euclidean Euclidean 80.6 85.5 85.3
Euclidean Cosine 83.5 87.4 86.7
Cosine Euclidean 84.8 89.2 87.3
Cosine Cosine 87.0 90.3 88.3
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the-art techniques irrespective of their backbone architectures in all
datasets.

4.5. Ablation study

This section aims to show the effectiveness of each component of our
proposedDL framework. First, we show the effect of varying resolutions
with our proposed approach. Then, We study the impact of different
sequence sizes and different distance measures with our proposed
approach.
Fig. 4. Examples of tracklets of 3 individuals from theMARS dataset. Thefirst row shows the orig
CNN) with Cosine approach, and the third row visualizes the attention map of our proposed ST
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4.6. Influence of varying resolutions

To implement this experiment, we chose ResNet50-IBN [52] with
the resolution of 256 × 128 and 384 × 128 on the MARS dataset.
Here, we first reproduce the results of the Baseline [15] approach
with both resolutions. Then, we did the experiments with cosine dis-
tance (CD) for triplet sampling. Finally, we conducted the experi-
ments with all the components of the proposed framework with
both resolutions.

Table 2 reported results of those experiments. By comparing
Baseline (2D-CNN or 3D-CNN) to Baseline (2D-CNN or 3D-CNN) +
CD, we can find significant improvement in accuracy with both reso-
lutions. Including CD in the training process enables the model to
converge faster (i.e. approximately 300 epochs faster). Results also
suggest that simple concatenation of the feature representations
from 2D-CNN and 3D-CNN does not help to improve the recognition
accuracy. Including both 2D-CNN and 3D-CNN as proposed in our
STCA framework improves the recognition accuracy significantly
by the measures of 9.6% in mAP and 5.8% in rank-1 over the Baseline
(2D-CNN) approach with 384 × 128 resolution. It also converges
relatively faster than the other two alternatives. (See Table 3.)

In Fig. 5, we also demonstrate some qualitative examples from
the MARS dataset which indicates that our proposed STCA approach
effectively finds the true match in rank-1 (see the first row of each
part of Fig. 5 (a)–(e)) when there are cases of misalignment, occlu-
sions and body parts missing, while the 2D-CNN (Baseline) [15] ap-
proach finds it in later ranks. We also observed that there are few
cases, as in Fig. 5 (e), where the true matches are only available in
rank-1 using our STCA approach, while there are no true matches
in the subsequent ranks. The qualitative analysis also suggests that
there are a few cases where the proposed STCA approach is not
able to find the true match in rank-01 (see the first row of Fig. 5
(f)) when all the images in a tracklet are well-aligned, although
they are eventually recognized within the first few ranks (most
cases in rank-2).
inal input tracklets; the second row shows the output attentionmap from the Baseline (2D-
CA approach.
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4.7. Influence of varying sequence size

In video ReID, the length of the sequence has an effect on the repre-
sentative power of final aggregated feature embedding. Therefore, we
did this experiment by considering the frame lengths 2,4,6,8,10,12, fol-
lowing the state-of-the-art [22,25] experimental setup. We found the
optimal results by considering 8 frames in a sequence.

4.8. Influence of different distance measure

To implement this experiment, the proposed STCA approach is in-
vestigated with the resolution 384 × 128 on the MARS and iLIDS-VID
dataset. We chose widely use Cosine and Euclidean distance measures,
both for triplet sampling andmeasuring similarity scores. Fig. 6 presents
the loss curves that have beenwhile optimizing the STCA network using
Cosine and Euclidean distance-based triplet sampling, respectively. As
suggested in the reported curves, the lower-scale (i.e small angle) in co-
sine based hard triplet sampling as depicted in Fig. 6(a) and
(b) prompted the network optimization to be converged faster than
that of Euclidean distance based triplet sampling in Fig. 5 (c) and (d).
To quantify this argument, we also reported the results in Table 4 for
all combinations of Cosine and Euclidean measures. Reported results
demonstrate that using Cosine measures for triplet sampling achieves
a significant margin of improvement compared to utilizing Euclidean
Fig. 5.Visual Comparison of query-set tracklets to top-5matching tracklets for six randomperso
results produced by STCA(Ours) and 2D-CNN (Baseline) approaches, respectively. Tracklets su
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distance. We obtain the optimal performance for our approach when
we used Cosine distance both for triplet sampling and measuring simi-
larity scores.

4.9. Visualization

The goal of this section is to visualize the attention map with
our proposed and the 2D-CNN + CD approach. In this case, we select
a few samples from particular tracklets with misalignment and
visualize the attention map from the final 2D-CNN backbone layer.
Fig. 4 evident that the attention map from our proposed STCA ap-
proach applies more weight (see. Third row) to the object of interest
rather than scatter weight of the attention map with 2D-CNN + CD
approach.

4.10. Complexity analysis

Since the proposed STCA framework is the combination of
3D-CNN and 2D-CNN, the model complexity is higher in terms
of the number of parameters and Multiply-Accumulate (MAC) op-
eration. The proposed DL framework with ResNet50-IBN and
ResNet3D-50 has 41.87M parameters and 12.97G MACs operation.
Mention that, the cross attention network itself has only .002514M
parameters.
n in theMARS dataset. For each query, the first and second rows correspond to the ranking
rrounded by green boxes denote the matches between query and gallery.



Fig. 6. STCA-based loss graphs for Euclidean and Cosine distance: (a) and (b) represent the total and triplet loss curves based on Cosine distance based hard triplet sampling, respectively;
(c) and (d) represent the total and triplet loss curves based on Euclidean distance based hard triplet sampling, respectively.
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5. Conclusions and future work

A novel DL framework (STCA) is proposed for video-based person
ReID. A key component of this framework is the cross attention network
including both 2D-CNN and 3D-CNN that dynamically selects the more
relevant convolutional filters of the 2D-CNN backbone based on crossly
attended spatio-temporal information, for enhanced feature represen-
tation and finer-grained inference. The proposed framework requires
minimal modification to backbone 2D-CNNs commonly used for
pairwise matching in ReID, and cross fusion can effectively combine
spatio-temporal information to train the backbone network. Addition-
ally, it exploits the benefits of using Cosine distance measure for
batch-hard triplet mining. Experimental results on several benchmark
datasets demonstrate that our proposed STCA framework can outper-
form related state-of-the-artmethods, including approaches specialized
to address misalignment issues.

To deal with the ReID challenges for gaining higher recognition
accuracy, we proposed a DL framework STCA that has a greater compu-
tational complexity. Thus, future experiments could be exploring state-
of-the-art pruning techniques guided by our proposed approach that
could dynamically enable the pruning techniques to select and remove
unnecessary filters, while trying to maintain a comparable accuracy.

Besides the pruning techniques, skipping the channels or frames
through a learned decision policy could be beneficial to reduce the com-
putational complexity for efficient video ReID. Low-level analysis of the
STCA-based rank list shows that there is a number of missing true
matches in rank-01. Thus, there is still room for improvement by utiliz-
ing a GAN-based sampling strategy for introducing synthetic im- ages in
a batch while mining hard triplets for robust optimization and better
recognition accuracy.
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