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A B S T R A C T

Learning generalized feature embedding is crucial for various computer vision tasks, including domain gener-
alizable person re-identification (ReID). ReID aims to develop deep learning-based feature embeddings that can
effectively recognize individuals in both trained (source) domains and unseen target domains. However, many
state-of-the-art ReID methods suffer from overfitting as they train and test within the same source domain.
To address this issue, we investigate the potential of multi-granularity approaches in mitigating domain shift
challenges in person re-identification. Specifically, we propose a novel framework called instance-guided multi-
granularity (IGMG), which leverages style-free features through non-parametric Instance Normalization (IN) at
multiple granularity levels. While high-level abstract concepts are often not shared across different classes, low-
and mid-level features can offer more shareable information to enhance the model’s generalization capabilities.
By incorporating this concept, our framework can dynamically eliminate style variations across various levels
of abstraction. As a result, it enables the model to capture fine-grained details and high-level semantics, leading
to enhanced robustness against changes in data distribution. To validate the effectiveness of our approach, we
conduct extensive experiments on multiple benchmark ReID datasets. The results consistently demonstrate that
our proposed framework exhibits strong generalization capabilities, performing consistently well on unseen
target domains. The code is available at https://github.com/mdamranhossenbhuiyan/IGMG/.
. Introduction

Person re-identification (ReID) is a task that involves identifying an
ndividual across multiple camera views without any overlap. It has
ained significant attention due to its wide range of applications in
ideo surveillance. In this task, a person re-identification system aims
o match a target person’s given image (probe) captured by one camera
ith a gallery of images taken from different cameras. The task is highly

hallenging due to factors such as the flexible nature of the human
ody, variations in viewpoints, and varying illumination conditions.
hese factors can cause significant visual differences between images
f the same person, while different individuals may exhibit similar
ppearances, further complicating the recognition process.

Supervised person re-identification (ReID) approaches have been
xtensively studied in the literature, with several notable methods pro-
osed (Bhuiyan et al., 2014; Ahmed et al., 2015; Hermans et al., 2017;
e et al., 2018; Sun et al., 2018; Luo et al., 2019; Bhuiyan et al., 2020;
afner et al., 2022; Lin et al., 2023; Liu et al., 2023; Ji et al., 2023).
hese approaches involve training and testing models on different splits
f the same dataset or domain. However, one common drawback is the
ifficulty in generalizing the learned model to unseen target datasets
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due to domain shifts. To illustrate this issue, Fig. 1(a)–(d) displays
samples from different ReID datasets, highlighting the visible style
discrepancies in terms of color saturation, contrasts, lighting, resolu-
tions, clothing styles, seasons, and content variations. These differences
in image data, captured under diverse conditions and by different
cameras, contribute to the poor generalization capability of models
trained on one dataset and tested on another. The t-SNE visualization in
Fig. 2, which represents high-dimensional data in a lower-dimensional
space, further demonstrates the distinct distributions and disparities
between the Market1501 and DukeMTMC datasets. Existing approaches
often tackle these challenges by overfitting the model to the training
data, resulting in better recognition accuracy within the same dataset.
However, when evaluated on previously unseen target datasets, these
models suffer from a significant drop in performance, highlighting the
limitations of their generalization capability. This problem is commonly
referred to as style or content discrepancies in the literature, emphasiz-
ing the need to address the distribution differences in re-identification
tasks.

The field of deep ReID has witnessed the emergence of various
techniques to address its challenges. One particular approach is un-
supervised domain adaptation (UDA) ReID (Wang et al., 2018c; Yang
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Fig. 1. Figure (a)–(d) showcases examples of domain shifts observed in re-identification
across multiple datasets. Each column within each dataset represents bounding boxes
of the same individual, while each row represents the same individual captured by
different cameras. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

et al., 2019; Zhong et al., 2019; Mekhazni et al., 2020; Yu et al.,
2019; Lin et al., 2020; Wang and Zhang, 2020; Li et al., 2023), which
leverages unlabeled data from the target domain. However, UDA-ReID
still relies on having access to target domain data, which can be costly
or unattainable in some cases. Consequently, researchers have turned to
Domain Generalization (DG) methods, which aim to train models that
can generalize to unknown target domains using labeled data from one
or more source domains instead of relying on actual target domain data.
Therefore, in practical real-world applications, DG-ReID represents the
most viable approach compared to other ReID techniques.

While Domain Generalization (DG) approaches have been success-
fully applied to various applications (Ulyanov et al., 2016; Muandet
et al., 2013; Shankar et al., 2018), their direct application to ReID
poses a challenge due to the mismatch in label spaces between source
and target domains. Unlike other applications, ReID involves differ-
ent individuals in different datasets, making it infeasible to assume
a shared label space. Therefore, DG-ReID methods need to address
significant domain discrepancies to achieve effective discrimination
in unseen target domains with different label spaces. Several ReID
approaches (Jia et al., 2019; Jin et al., 2020; Choi et al., 2021; Ni et al.,
2022; Dai et al., 2021; Zhao et al., 2021; Luo et al., 2020) have been
developed to tackle the domain generalization settings, categorized into
meta-learning-based methods and invariant methods. Meta-learning
approaches, such as those used in ReID methods like Choi et al. (2021),
Ni et al. (2022), Dai et al. (2021) and Zhao et al. (2021), typically
employ a split of the training set into meta-training and meta-test sets
to simulate the generalization process for unknown domains. However,
the optimization algorithms involved in meta-learning can be computa-
tionally expensive and time-consuming, particularly in large-scale ReID
scenarios. On the contrary, invariants methods (Jia et al., 2019; Jin
et al., 2020) directly extract domain-invariant features that usually
rely on different normalization techniques to normalize the global
feature representation by using statistics computed in mini-batches
and regularize feature representations from heterogeneous domains,
and thus the trained model is often capable of adapting to unseen
2

Fig. 2. The t-SNE visualization illustrates the domain shifts in re-identification between
the Market1501 (M) and DukeMTMC (D) datasets. The feature points displayed here
were extracted using the same experimental setup and baseline model (Bag-of-Trick
(BOT)) (Luo et al., 2019) trained in a supervised manner using labels from the
corresponding datasets. Red points represent DukeMTMC features extracted with a
Market1501-trained model, while green points denote Market1501 features using a
DukeMTMC-trained model.

domains. Relying on global feature representation, most of the DG-
ReID techniques in this area integrated Instance Normalization (IN)
to eliminate style differences between the domains. However, their IN
module relies on the learnable affine parameters, which can potentially
introduce biases toward specific domains during training

This paper proposes a novel approach called Instance-guided Mul-
tiple Granular (IGMG) model for Domain Generalization Person Re-
identification (DG-ReID). Our model draws inspiration from the Mul-
tiple Granular Network (MGN) introduced by Wang et al. (2018a) and
aims to generate domain-invariant features by integrating global and
local information at various levels of granularity. The IGMG model
leverages coarse to fine-grained features, encompassing low-level char-
acteristics like color and texture, mid-level attributes such as body parts
and poses, and high-level descriptors like clothing style and accessories.
By considering features at multiple abstraction levels, our deep learning
model becomes capable of capturing intricate details and semantic
information, thereby enhancing its robustness to changes in data dis-
tribution. As a result, the proposed model exhibits strong performance
even when tested on new target datasets with different distributions. To
implement this idea, we design an instance-guided multiple granular
network, comprising one global branch and two local branches, each
with separate parameters. The network is integrated into the ResNet50
backbone architecture, starting from the 4th residual stage. In the
local branches of our IGMG model, we divide the feature maps into
multiple stripes that represent distinct image parts. This division allows
us to independently learn more focused saliency preferences for local
features, drawing inspiration from the works of Wang et al. (2018a)
and Sun et al. (2018).

In addition, we incorporate a non-learnable Instance Normalization
(IN) module in our proposed IGMG network to serve as a gating
mechanism for the different branches. We have observed that using a
non-learnable IN module, which relies on fixed statistics independent of
the domain, is more effective in capturing the inherent characteristics
of the data and facilitating generalization to new domains. Choosing the
appropriate convolutional layers in the backbone CNN for integrating
the IN module becomes a crucial consideration to achieve the desired
gating effect. We argue that integrating the IN module at the shallow
layers of the backbone CNN is advantageous. Shallow layers in deep
CNN architectures typically extract low- and mid-level features, which

can be viewed as more abstract concepts such as parts or intricate
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texture patterns associated with a particular domain’s style. On the
other hand, deeper layers tend to capture high-level features that are
more content-centric rather than style-based. By integrating the IN
module in the shallower layers, we enhance the extraction of style-free
back-propagated features through the gradients of the loss function,
which correspond to the style-free information. This encourages the
lower and middle layers to learn filters that extract more domain-
invariant patterns. Consequently, the network becomes more adept at
capturing discriminative information while being less influenced by
domain-specific stylistic variations.

The main contribution of this paper is threefold:

• We present a unique multi-granular network designed for person
re-identification. Our approach distinctively integrates high-level
semantics with fine-grained nuances. This results in a compre-
hensive and adaptable feature representation, offering robustness
against data variations across domains.

• We pioneer a technique for deriving style-independent features.
Central to our method is the innovative use of a non-parametric
Instance Normalization (IN) module. As far as we are aware, this
is the inaugural application of non-parametric IN as a control
mechanism for branching within Domain Generalizable Person
Re-identification.

• The inclusion of the non-parametric IN module serves a two-
fold purpose: it proficiently distinguishes style from content and
adeptly addresses the longstanding challenge of style disparity, a
noted concern in previous research.

The structure of the remaining sections in this paper is as follows: In
Section 2, we present background information on deep learning models
for person ReID and Domain Generalization Person ReID. The details
of our proposed Instance-guided Multiple Granular (IGMG) approach
are provided in Section 3. Section 4 comprehensively describes the
experimental methodology, including benchmark datasets, protocol,
performance measures, and presents the comparative results. Finally,
in Section 5, we draw a comprehensive conclusion and discuss future
directions.

2. Related work

This section offers a concise summary of the current state-of-the-art
deep ReID approaches, as well as deep domain generalized person ReID
methods..

2.1. Deep person ReID.

Deep person ReID has experienced significant advancements in re-
cent years, branching out from the initial Siamese network framework.
One prominent approach is supervised ReID (Zheng et al., 2019; Chen
et al., 2019a; Luo et al., 2019; Chen et al., 2019b; Zhang et al., 2020a;
Bhuiyan et al., 2020; Sun et al., 2018; Masson et al., 2021; Bhuiyan
and Huang, 2022; Hafner et al., 2022; Lin et al., 2023; Liu et al., 2023;
Ji et al., 2023), which has demonstrated high recognition accuracy in
addressing challenges related to misalignment within a dataset. These
methods often employ techniques such as part-based approaches (Sun
et al., 2018; Qian et al., 2018; Chen et al., 2019a; Bhuiyan et al.,
2020) and attention-aware networks (Chen et al., 2019b,a; Luo et al.,
2019; Zhang et al., 2020a; Lin et al., 2023; Liu et al., 2023) to improve
performance. Supervised ReID models perform well on previously en-
countered datasets but struggle with unseen domains due to domain
shifts and style differences, making them unsuitable for real-world
applications where obtaining labeled data is challenging. To handle this
issue, researchers put their efforts into designing unsupervised domain
adaptation (UDA) based ReID approaches (Wang et al., 2018c; Yang
et al., 2019; Mekhazni et al., 2020; Zhong et al., 2019; Yu et al.,
2019; Wang and Zhang, 2020; Ge et al., 2020; Feng et al., 2021; Liu

et al., 2022; Li et al., 2023; Chen et al., 2023) where there is instant
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target domain data without annotations. It requires the collection of
target domain data and updating the domain accordingly. UDA ReID
approaches can roughly be categorized into four kinds: clustering the
target data to generate pseudo labels (Fu et al., 2019; Zhai et al.,
2020; Ge et al., 2020; Xuan and Zhang, 2021; Feng et al., 2021; Liu
et al., 2022; Chen et al., 2023), self-supervised training on the target
domain (Yang et al., 2019; Zou et al., 2020), generating images similar
to the target domain style and source domain label space for data aug-
mentations (Wang et al., 2018c; Zhong et al., 2018, 2019; Zhang et al.,
2020b) and finally aligning feature distribution between source and
target domains (Wu et al., 2019; Mekhazni et al., 2020; Li et al., 2021).
However, existing Unsupervised Domain Adaptation (UDA) ReID meth-
ods still necessitate accessing and updating with target data, a process
that can be time-intensive for real-world usage. Recent studies, like
those by Delussu et al. (2021, 2023), have explored the human-in-the-
loop (HITL) approach to address domain shifts in ReID. This strategy,
contrasting traditional UDA and Domain Generalization (DG) methods,
leverages real-time human feedback on the target data during the ReID
system’s operation. While in situations where no target data is available
for model training, it is worth noting that, unlike DG methods, HITL
strategies utilize target data obtained during system use.

2.2. Domain generalization person re-identification.

The inception of domain generalization approaches stems from the
feasible practical assumption that there is no target data (i.e., no
matter whether labeled or unlabeled) is available while deploying
the ReID model. Compared to domain generalization for other vision
applications (Ulyanov et al., 2016; Muandet et al., 2013), DG-ReID
has to deal with the additional challenges of having disjoint label
spaces where the target domain typically has different identities from
the source domain. Recently, there have been a number of DG-ReID
approaches (Jia et al., 2019; Jin et al., 2020; Ni et al., 2022; Choi
et al., 2021; Dai et al., 2021; Luo et al., 2020; Zhang et al., 2023; Wu
et al., 2023) that uses different pipelines to enhance the generalization
capability of the learned model. SuA-SpML (Zhang et al., 2023), Meta-
GA (Wu et al., 2023) MetaBIN (Choi et al., 2021), RaMoE (Dai et al.,
2021) and MDA (Ni et al., 2022) utilize the meta-learning pipelines
where the training set is divided into meta-training sets and meta-test
sets to simulate the generalization process of an unknown domain.
As indicated in the meta-training pipeline, the meta-training process
of meta-learning is complex and slow which could be considered as
backlash for deploying it in the DG-ReID setting. On the other hand,
Cross-Domain Mixup (Luo et al., 2020) and DomainMix. Wang et al.
(2020) relied on data augmentation techniques by mixing data from
different domains without considering the abrupt transition among
the domains. Building on the same approach, DCCL (Gong et al.,
2023) structures its training using a Curriculum Learning method. This
method mirrors how humans learn throughout their lives, starting from
simpler tasks and gradually moving to more complex ones to adapt and
learn in unfamiliar domains. Nevertheless, the data augmentation in
such a manner is just another way of expanding the existing category of
data, and the model training using those data might lead to overfitting
to the known domains. Finally, there are some DG-ReID approaches (Jia
et al., 2019; Jin et al., 2020; Jiao et al., 2022) rely on developing invari-
ant techniques that can optimize and extract domain invariant features
using different deep neural network architectures. DualNorm (Jia et al.,
2019) utilized the IN module in each bottleneck in the shallow layers
of the deep network and obtained robust domain-invariant features
over multiple unknown domains. Following the same pipeline, SNR (Jin
et al., 2020) proposed style normalization and restitution that inte-
grate IN as in Jia et al. (2019) followed by identity-relevant feature
restitution for better disentanglement. Adopting a similar framework,
DTIN-Net (Jiao et al., 2022) leverages unnormalized features to refine
normalized ones for better domain and instance adaptation, while
also using multi-task learning in multi-source scenarios to enhance
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Fig. 3. Illustrations of the proposed Instance Guided Multi-granularity (IGMG) framework for DG-ReID. (a) Training architecture. Optimal feature multi-granularity is achieved by
dividing the ResNet-50 backbone into global and local branches. Additionally, non-parametric Instance Normalization (IN) introduces the gating effect in each convolutional layer
(except the final one) to filter out the style features related to dataset bias. Each route from Conv4_2x to its respective loss function denotes a unique supervisory signal, with no
weight sharing across branches. (b) During testing, all the reduced features are concatenated together as the final feature representation of a pedestrian image.
domain generalization capabilities further. However, all these invariant
approaches (Jia et al., 2019; Jin et al., 2020; Jiao et al., 2022) utilized
the learnable parameters of IN, which hinders its normalization process
for removing the style from each sample. Additionally, most of these
DG-ReID approaches (Jia et al., 2019; Jin et al., 2020; Ni et al., 2022;
Choi et al., 2021; Dai et al., 2021; Luo et al., 2020) relied on global
feature representation ignoring the benefit of using both global and
local representations to deal with the domain shift with a different
distribution.

Unlike these approaches (Jia et al., 2019; Jin et al., 2020; Ni et al.,
2022; Choi et al., 2021; Dai et al., 2021; Luo et al., 2020), in our IGMG
framework, we exploit the advantages of using multi-granular feature
representation that combines global and local information in different
abstractions. It can help address domain shift in person re-identification
by allowing the model to learn features at different levels of abstraction,
making it more robust to changes in the data distribution. Different
from other DG-ReID approaches, we integrate the IN module that does
not consider learnable affine parameters while training and initiates the
gating effect on different branches of IGMG architectures to filter out
the style information for enhancing the generalization capability of the
learned feature.

3. Our proposed framework IGMG

Our objective in this study is to develop a system that learns
features that are consistent across different domains and perform well
on new, unseen data. The overall structure of our proposed model,
referred to as IGMG, is illustrated in Fig. 3. The IGMG model consists
of backbone CNNs that incorporate multiple granular representations
and IN modules. We train the IGMG model end-to-end in a single step.
When presented with an input image, the features extracted from the
convolutional layers are passed through the IN module. This module
employs a gating mechanism to remove style-related statistics, and
the resulting features are then segmented into a few distinct granular
components. This division helps reduce the impact of domain-specific

variations to some extent.
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3.1. Multi-granular network

In ReID, deep neural networks naturally differentiate body parts
based on their inherent meanings, but they often overlook specific
patterns in body parts, focusing mainly on the central body. Inter-
estingly, when networks are trained on local features, their responses
cluster around notable semantic patterns, with this clustering affected
by the size of the regions considered. This behavior suggests that
the granularity of regions impacts the network’s focus on particular
patterns. By leveraging this insight, we introduce the IGMG frame-
work that employs the Multiple Granularity Network (MGN) architec-
ture (Wang et al., 2018a), integrating both broad global and detailed
multi-granularity local features. to enhance recognition, emphasizing
better domain generalization.

To ensure the fulfillment of our overall objectives, selecting an
appropriate deep CNN architecture is a crucial step in our proposed
IGMG network. While there exist various deep CNN architectures like
VGGs (Simonyan and Zisserman, 2014), Inception (Szegedy et al.,
2016), and OsNet (Zhou et al., 2019), we have opted for ResNet (He
et al., 2016) architecture. The ResNet backbone is comprised of multi-
ple residual convolutional blocks, namely: Conv1, followed by Conv2x,
Conv3x, Conv4x, and Conv5x. As illustrated in Fig. 3, the ResNet-50
architecture has been adapted to better fit the requirements of this
work. Instead of being utilized in its entirety, specific blocks from
ResNet-50 have been selected. More specifically, following the MGN
architecture (Wang et al., 2018a), we have made specific modifications
to the network structure beyond the Conv4_1 layer. These modifications
involve the partitioning of this portion of the network into three sepa-
rate branches. These changes were made to ensure that the network’s
architecture aligns with the specific objectives and design principles
of our proposed IGMG framework. It is important to highlight that
our design emerged as the most optimal after thorough evaluations of
different branch counts and stripe setups.
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In Fig. 3, the upper branch is known as the Global branch (Part-
), and its primary focus is on learning global feature representa-
ions without considering partition information. To achieve this, the
eature representation from the convolutional blocks is reduced in
imensionality, going from 2048 dimensions to 512 dimensions. This
imensionality reduction is achieved through a series of operations,
ncluding average max-pooling and a 1 × 1 convolution layer with
atch normalization. The resulting feature map serves as input for both
he triplet loss and the fully connected (FC) layer, specifically for the
lobal branch during training.

The architecture of both the middle and lower branches in the net-
ork mirrors that of the Global Branch, with one exception: the absence
f down-sampling operations in the Conv5x block. In each branch, the
utput feature maps are evenly divided into multiple horizontal stripes,
hich serve as the foundation for learning local feature representations.
hese stripes undergo the same subsequent operations as the Global
ranch. These branches are referred to as Part-g Branches, where ‘g’
epresents the number of partitions on the unreduced feature maps.
or example, in Fig. 3, the middle branch can be denoted as the Part-2
ranch, while the lower branch can be designated as the Part-3 Branch.

During the testing phase, the reduced features are concatenated to
btain the final feature. This merging of global and local information
ims to enhance the learned features’ robustness and improve their
bility to discriminate between different instances.

.2. Instance normalization (IN)

Since IN (Ulyanov et al., 2016) can effectively remove the style
ontent, it introduces the gating operation to filter out the style in-
ormation propagated throughout the backbone architecture. Given a
ini-batch of feature 𝐅𝑙

𝑖 ∈ R𝑏×𝑐𝑙×ℎ′×𝑤′ from the 𝑙th layer of the backbone
architecture, the IN can perform instance normalization as follows:

�̃�𝑙
𝑖 = 𝐼𝑁(𝐅𝐥

𝐢) = 𝛾(
𝐅𝐥
𝐢 − 𝜇(𝐅𝐥

𝐢)

𝜎(𝐅𝐥
𝐢)

) + 𝛽, (1)

where 𝜇(.) and 𝜎(.) denote the mean and standard deviation computed
across spatial dimensions independently for each channel and each
sample/instance, and 𝛾, 𝛽 ∈ R𝑐 are affine parameters learned from data.
In our IGMG framework, we propose that there is no necessity for the
IN module to have learnable parameters during training. Therefore,
we set the values of 𝛾 and 𝛽 to 1 and 0, respectively. This design
choice enhances the flexibility of the model, enabling it to adapt to
varying input statistics. Consequently, the model exhibits improved
generalization performance when applied to new domains or datasets.
So the final equation for IN in our IGMG framework is:

�̃�𝑙
𝑖 = 𝐼𝑁(𝐅𝐥

𝐢) =
𝐅𝐥
𝐢 − 𝜇(𝐅𝐥

𝐢)

𝜎(𝐅𝐥
𝐢)

(2)

Unlike Jin et al. (2020) and Jia et al. (2019), we integrate the non-
parametric IN in between all the convolutional blocks of ResNet-50 (He
et al., 2016), as shown in Fig. 3.

3.3. Network loss

To train the IGMG network, we employ the training techniques
utilized in the Bag-of-Trick (BOT) approach (Luo et al., 2019). This
approach combines triplet losses and identity (ID) losses, incorporating
label smoothing at multiple levels of multi-granularity. For a given
mini-batch of images, the total loss can be expressed as:

 =
8
∑

𝑔=1
𝛼𝑔

𝑡𝑟𝑖𝑝𝑙𝑒𝑡 + 𝜆
𝑔 , (3)

where 𝑔
𝑡𝑟𝑖𝑝𝑙𝑒𝑡 and 

𝑔 denote the triplet loss and ID loss of the
𝑔th granular output, respectively. 𝛼 and 𝜆 are the weight of different
granular levels for the triplet and identity losses, respectively.
 s
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Table 1
Different evaluation protocols for large-scale multi-source DG-ReID.
Setting Training Data Testing Data

Protocol-2 M+D+C3+MS PRID, GRID, VIPeR
Protocol-3 Leave-one-out for M+D+C+MT

Following the state-of-the-art ReID approaches (Luo et al., 2019;
Bhuiyan and Huang, 2022; Jin et al., 2020; Jia et al., 2019), we utilize
the widely used hard positive and negative mining technique for a mini-
batch (Hermans et al., 2017). For each sample in a mini-batch, it selects
the hardest positive and the hardest negative samples within the batch
when forming the triplets for computing the loss:

𝑔
𝑡𝑟𝑖𝑝𝑙𝑒𝑡 =

1
𝑁𝑠

𝑁𝑠
∑

𝑎=1

[

𝑚 + max
𝑦𝑝=𝑦𝑎

𝑑
(

𝐟𝑔𝑎 , 𝐟
𝑔
𝑝

)

− min
𝑦𝑝≠𝑦𝑎

𝑑
(

𝐟𝑔𝑎 , 𝐟
𝑔
𝑛
)]

+
(4)

where
[

.
]

+ = max(., 0), 𝑚 denotes a margin, 𝑁𝑠 is the set of all hard
triplets and 𝑑 is the Cosine distance. 𝐟𝑔𝑎 , 𝐟𝑔𝑝 and 𝐟𝑔𝑛 denote the 𝑔th
granular features of anchor, positive and negative samples with their
labels 𝑦𝑎, 𝑦𝑝 and 𝑦𝑛, respectively. Utilizing label smoothing (LS) (Wang
et al., 2018b) into the ID loss has proven effective in preventing the
ReID model from overfitting the training IDs. From this observation,
we integrate LS with the ID loss. Given an image of an individual with
true ID label 𝑦 and 𝑝𝑔𝑖 as the 𝑔th granular ID prediction logits of class
𝑖, the ID loss can be written as:

𝑔
𝐼𝐷 =

𝑁
∑

𝑖=1
−𝑞𝑔𝑖 log(𝑝

𝑔
𝑖 ), (5)

where LS construction of 𝑞𝑔𝑖 is:

𝑞𝑔𝑖 =

⎧

⎪

⎨

⎪

⎩

1 − 𝑁 − 1
𝑁

𝜖, if 𝑖 = 𝑦
𝜖
𝑁

, otherwise,
(6)

where 𝜖 is a constant to force the model to be less confident on the
training set. In this work, 𝜖 is set to be 0.1. For small datasets with
fewer IDs, LS has proven to be effective in improving the performance
of the model.

4. Empirical evaluation

In this section, we provide information about the datasets used,
implementation details, and performance metrics for validating our
proposed IGMG framework. Subsequently, we conduct a comprehen-
sive comparison with state-of-the-art methods, considering both single-
source and multi-source scenarios, including a large-scale dataset for
DG-ReID. Furthermore, we present an ablation study to evaluate the
impact of various components incorporated in the proposed IGMG
approach. Additionally, we perform qualitative result analysis by vi-
sualizing rank lists.

4.1. Experimental settings

4.1.1. Implementation details.
In our IGMG framework, we have the flexibility to incorporate

various feature extractors. However, for this study, we choose the
ResNet50 architecture (He et al., 2016) pretrained on Imagenet as our
backbone due to its widespread usage in re-identification tasks. In the
proposed architecture, the pretrained weights after the Conv4_1 block
f the original ResNet50 are shared among the three branches that
ollow the same block. To maintain consistency, all input images are
esized to a resolution of 384 × 128. Following the best practice in
eID, our training process utilizes the PK triplet sampling technique.
his involves randomly selecting P identities and then, for each one,
icking K random instances, giving us a batch size of P*K. To put it

imply, our batches are made up of 64 images: 4 unique identities with
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Fig. 4. Visualization of the features via t-SNE in the single-source setting.
16 images each. For multi-source experiments, different identities and
cameras from various datasets are mixed together within a batch. Data
augmentation techniques such as random cropping, flipping, and color
jittering are applied. However, we choose not to utilize random erasing
(REA) as it has shown negative effects in cross-domain ReID tasks, as
mentioned in previous works (Jin et al., 2020; Dai et al., 2021). For
optimization, we employ the Adam optimizer with a weight decay of
0.0005. The model is trained for a total of 60 epochs, with a warmup
strategy implemented in the first 2000 iterations. The learning rate is
initialized to 3.5 × 10−4 and is reduced by a factor of 0.1 after the 40th
epoch. All models are implemented using PyTorch and trained on a
single NVIDIA V100 GPU with 12 GB HBM2 memory. The duration
of training fluctuates based on various experimental settings and the
specific datasets used, particularly influenced by the number of unique
identities present in each dataset. As an example, in the single-source
experiment of Market1501 → DukeMTMC, our proposed IGMG model
required approximately 2 h of training time. This was based on the
presence of 750 distinct identities within the Market1501 dataset used
for training purposes.

4.1.2. Datasets.
Following the state-of-the-art DG-ReID approaches (Jia et al., 2019;

Jin et al., 2020; Dai et al., 2021; Ni et al., 2022), we conduct our
experiments on the public ReID datasets, including Market1501 (Zheng
et al., 2015), DukeMTMC-reID (Zheng et al., 2017), CUHK-03 (Li et al.,
2014), MSMT17 (Wei et al., 2018), and three small datasets including
datasets PRID2011 (Hirzer et al., 2011), GRID (Loy et al., 2010), and
VIPeR (Gray and Tao, 2008). For simplicity, we denote Market1501 as
M, DukeMTMC-reID as D, MSMT17 as MS, and CUHK03 as C3.

4.1.3. Evaluation settings
For single-source DG ReID, we choose either Market1501 (Zheng

et al., 2015), and DukeMTMC-reID (Zheng et al., 2017) as the training
set and directly test on the other dataset.

For multi-source DG-ReID, we adopted the protocols implemented
by the state-of-the-art DG-ReID (Dai et al., 2021; Jin et al., 2020; Jia
et al., 2019), as shown in Table 1. Under Protocol-2 (Dai et al., 2021),
we utilize all images from M+D+C3+MS, which includes both training
and testing sets. Our tests target four smaller ReID datasets: PRID,
GRID, VIPeR, and iLIDs. The final results for these datasets are derived

from the average performances across 10 random gallery and probe
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set splits. For Protocol-3 (Dai et al., 2021), we employ a ‘‘leave-one-
out’’ setting with M+D+C3+MS. This means we pick one domain from
M+D+C3+MS for testing (using only its test set) and train using all
other domains, including both their training and testing sets.

Following the common trend of evaluation (Jin et al., 2020; Jia
et al., 2019; Luo et al., 2019; Dai et al., 2021), we use two main metrics
to evaluate our proposed IGMG framework and baseline methods. First,
we look at the rank-01 accuracy, which we refer to as R-1 in our
tables. In the context of ReID, rank-01 accuracy refers to the percentage
of queries where the correct match is the top result in the ranking
list. Second, we measure the mean average precision, or mAP which
measures the average precision of retrieval results across all queries,
providing a comprehensive evaluation of both the precision and recall
of the model.

4.2. Comparison with state-of-the-art methods

4.2.1. Single-source DG-ReID.
The purpose of this experiment is to evaluate our proposed IGMG

framework using a single-source dataset. We trained our model us-
ing the Market (and alternatively, Duke) dataset, then tested on the
Duke (or Market) as the target. Additionally, after training on the
MSMT17 dataset, we tested our model on both the Market and Duke
datasets. To demonstrate the effectiveness of our IGMG approach, we
compared it with two recent state-of-the-art approaches: DG-ReID and
multigranularity-based MGN approach.

Table 2 presents a comparison of the performance of our IGMG
approach with the state-of-the-art approaches. Our IGMG framework
consistently outperformed the best-performing state-of-the-art DG-ReID
methods, MDA (Ni et al., 2022) and DTIN-Net (Jiao et al., 2022), in
all evaluation measures. For example, our IGMG approach achieved a
7.2% improvement in rank-01 accuracy and a 5.5% improvement in
mAP over DTIN-Net for the 𝑀 → 𝐷 setting, and a 6% improvement
in rank-01 accuracy and a 4.7% improvement in mAP for the 𝐷 → 𝑀
setting. It is important to note that some state-of-the-art approaches,
such as SNR (Jin et al., 2020) and MDA (Ni et al., 2022), utilized
both the train and test splits of a dataset as the source domain. In
our experiment, we only used the train split as the source domain to
ensure a fair comparison with other DG-ReID approaches. Despite this
limitation, our IGMG framework still significantly outperformed SNR

and MDA approaches. To highlight the importance of multigranularity,
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Table 2
Comparisons between ours and the state-of-the-art in a single-source DG-ReID setting.

Methods Reference M → D D → M MS → M MS → D
R-1 mAP R-1 mAP R-1 mAP R-1 mAP

ECN baseline (Zhong et al., 2019) CVPR 28.9 14.8 43.1 17.7 43.2 20.7 47.4 27.4
PN-GAN (Qian et al., 2018) ECCV 29.9 15.8 – – – – – –
QA𝐶𝑜𝑛𝑣50 (Liao and Shao, 2020) ECCV 48.8 28.7 58.6 27.2 72.6 43.1 69.4 52.6
DSU (Li et al., 2022) ICLR 52.0 32.0 63.7 32.4 – – – –
SNR (Jin et al., 2020) CVPR 55.1 33.6 66.7 33.9 70.1 41.4 – –
MetaBIN (Choi et al., 2021) CVPR 55.2 33.1 69.2 35.9 – – – –
SuA-SpML (Zhang et al., 2023) TIP 55.5 34.8 65.8 36.3 – – – –
Meta-GA (Wu et al., 2023) MTA 55.1 34.9 69.3 36.6 – – – –
DualNorm (Jia et al., 2019) BMVC 56.2 35.2 72.2 39.9 78.7 51.5 75.1 59.6
MDA (Ni et al., 2022) CVPR 56.7 34.4 70.3 38.0 – – – –
DTIN-Net (Jiao et al., 2022) ECCV 57.0 36.1 69.8 37.4 – – – –
MGN (Wang et al., 2018a) ACM MM 61.9 41.1 71.1 38.6 78.6 49.8 75.7 58.1

IGMG Ours 64.2 41.6 75.8 42.1 80.9 53.5 77.7 61.6
Table 3
Comparisons between ours and the state-of-the-art in multi-source DG ReID on Protocol-2 setting. The best results are highlighted in bold.

Methods Reference Target: PRID Target: GRID Target: VIPeR
R-1 mAP R-1 mAP R-1 mAP

SNR (Jin et al., 2020) ECCV 49.0 60.0 30.4 41.3 55.1 65.0
DMG-Net (Bai et al., 2021) CVPR 59.9 69.7 37.3 47.2 62.3 70.9
RaMoE (Dai et al., 2021) CVPR 56.9 66.8 43.4 53.9 63.4 72.2
DualNorm (Jia et al., 2019) BMVC 58.6 69.8 40.9 49.8 61.6 70.6
DTIN-Net (Jiao et al., 2022) ECCV 67.4 77.4 49.4 58.4 64.0 71.9
IGMG Ours 63.8 73.0 45.2 53.4 65.2 72.9
Table 4
Comparisons between ours and the state-of-the-art in multi-source DG ReID on Protocol-3 setting. The best results are highlighted in bold.

Methods Reference D+C+MS→ M M+MS+C → D M+D+MS → C M+D+C → MS
R-1 mAP R-1 mAP R-1 mAP R-1 mAP

QA𝐶𝑜𝑛𝑣50 (Liao and Shao, 2020) ECCV 65.7 35.6 66.1 35.6 23.5 21.3 24.3 7.5
𝑀3𝐿 (Zhao et al., 2021) CVPR 75.9 50.2 69.2 51.1 33.1 32.1 33.0 12.9
SNR (Jin et al., 2020) ECCV 76.5 49.3 66.2 47.4 28.5 28.6 35.7 14.1
DEX (Ang et al., 2021) BMVC 81.5 55.5 73.7 55.0 36.7 33.8 43.5 18.7
DSU (Li et al., 2022) ICLR 77.8 52.6 71.7 53.9 34.6 32.5 46.9 19.0
QAConv-GS (Liao and Shao, 2022) CVPR 79.1 53.8 72.4 54.5 35.9 34.2 46.5 17.1
MixNorm (Qi et al., 2022) TMM 78.9 51.4 70.8 49.9 29.6 29.0 47.2 19.4
RaMoE (Dai et al., 2021) CVPR 82.0 56.5 73.6 56.9 34.6 33.5 34.1 13.5
DualNorm (Jia et al., 2019) BMVC 82.3 56.7 74.5 56.4 36.5 35.0 45.4 19.6
SuA-SpML (Zhang et al., 2023) TIP 81.0 56.6 70.8 51.2 – – – –
DCCL (Gong et al., 2023) TCSVT 82.7 60.4 72.5 55.0 36.9 36.0 45.3 18.2

IGMG Ours 83.1 57.1 76.2 57.7 37.3 36.3 41.6 19.7
we assessed the MGN approach (Wang et al., 2018c) In our evaluation,
it ranked as the second-best model among other DG-ReID models. This
highlights the effectiveness of introducing feature multi-granularity and
non-parametric instance normalization, which improves the generaliza-
tion capability of the model across unseen domains, regardless of the
size of the source domain in the single-source setting.

Visualization of the feature distribution in Single-Source Set-
ting. Fig. 4 depicts the visualization of feature distributions for the
source and target domains in a single-source setting. Upon examining
the figure, we can observe that the baseline method demonstrates
fewer overlapping regions between the features of different domains. In
contrast, our approach yields larger overlapping regions, indicating that
our method effectively learns domain-invariant features. This capability
enables our model to capture generalizable patterns that can be applied
to unseen domains. Hence, the results of our experiment validate the
effectiveness of our approach in learning domain-invariant features and
achieving better generalization across domains

4.2.2. Large-scale DG-ReID (Protocol-2)
This experiment aims to analyze the effect of our proposed IGMG

approach on large-scale multi-source ReID benchmarks in the protocol-
0 setting. Following protocols designed by the state-of-the-art DG-ReID
approaches (Ni et al., 2022; Dai et al., 2021; Jin et al., 2020) and for
7

drawing comparisons, all the small-scale target datasets in protocol-
2 tested in a single-shot setting using specific numbers of query and
gallery images. Specifically, for the VIPeR dataset, we use 316 query
images and 316 gallery images. We use 125 query images and 900
gallery images for the GRID dataset. Following (Ni et al., 2022; Dai
et al., 2021), all results are the average of 10 random splits on the target
datasets for protocol-2.

Table 3 reports the comparative performance of our approach with
the available state-of-the-art DG-ReID approaches on protocol-2 set-
tings. As shown in Table 3, the IGMG framework consistently works
well on all the considered datasets by outperforming the considered
baseline DualNorm. In particular, the margin of improvements for
the PRID dataset is 6.9% in rank-01 and 6.2% over the RaMoE (Dai
et al., 2021). The proposed IGMG framework trails DTIN-Net (Jiao
et al., 2022) in performance on the PRID and GRID datasets but
shows marginal improvement on the VIPeR dataset. This is largely
because DTIN-Net’s effectiveness stems from its multi-task training,
which is particularly suited for multi-source scenarios. However, when
applied to single-source DG-ReID, its performance diminishes. In such
single-source situations, our IGMG framework considerably outper-
forms DTIN-Net, as detailed in our Single-source DG-ReID experimental

analysis in Table 2.
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Table 5
Effect of different components of Multi-Granularity of our IGMG approach. G1 — Global
Branch of Part-01; P2(:) — All the components of Part-02; P3(:) — All the components
of Part-03, where G’x’ refer to the global feature and l’x’ refer to the local features of
the corresponding branches, respectively.

Methods M → D D → M
R-1 mAP R-1 mAP

G1 54.4 31.2 61.1 28.6
G1+ P2(G2) 58.6 35.5 64.7 32.6
G1+P2(G2+l1) 59.5 36.1 66.8 33.5
G1+P2(G2+l1+l2) 61.3 38.8 68.0 34.4
G1+P2(G2+l1+l2)+P3(G3) 61.8 38.8 69.6 36.3
G1+P2(G2+l1+l2)+P3 (G3+l1) 62.0 39.1 71.5 39.4
G1+P2(G2+l1+l2)+P3 (G3+l1+l2) 63.3 41.0 73.8 41.1
G1+P2(G2+l1+l2)+P3 (G3+l1+l2+l3) 64.2 41.4 75.8 42.1
G1+P2(G2+l1+l2)+P3 (G3+l1+l2+l3)+ P4(G4) 63.1 40.8 73.4 39.8
G1+P2(G2+l1+l2)+P3 (G3+l1+l2+l3)+P4 (G4+l1) 62.5 39.2 73.1 38.9

4.2.3. Large-scale DG-ReID (Protocol-3)
The target datasets presented in protocol-2 are small and thus may

not reflect the model generalizations correctly. That is why protocol-
3 was designed by Dai et al. (2021), Liao and Shao (2020) and Zhao
et al. (2021) to evaluate the proposed models on large-scale datasets as
shown in Table 1.

Table 4 reports the comparative performance of our IGMG approach
with the relevant state-of-the-art approaches under protocol-3. IGMG
outperforms all the state-of-the-art approaches by a good margin. Es-
pecially our IGMG approach improves the second best RaMoE (Dai
et al., 2021) by 8.6% rank-01 and 6.2% while tested on the MSMT17
dataset. It is important to note that while our approach does not
achieve the highest rank-01 accuracy on MSMT17, this discrepancy
may be attributed to the face blurring effects present in the MSMT17_V2
dataset, whereas most of the previously mentioned state-of-the-art DG-
ReID approaches were assessed using MSMT17_V1, which features
clear faces. Nevertheless, the mAP performance for MSMT17 displays a
marginal improvement over other DG-ReID counterparts, owing to its
comprehensive utilization of the whole query sets. Collectively, these
results affirm that our IGMG model exhibits robust generalizability
across varying target dataset sizes.

4.3. Ablation study

4.3.1. Assessing the impact of multi-granularity components in our IGMG
framework

To evaluate how each specific component (referred to as ‘‘Part-
based analysis’’) impacts our IGMG framework, we carried out ex-
periments where we progressively added components to the baseline
model. The performance improvement was compared under the single-
source DG-ReID setting for both 𝑀 → 𝐷 and 𝐷 → 𝑀 scenarios. The
results of this analysis are presented in Table 5. As expected, among
the alternative components, the performance of the global branch of
Part-01 was found to be inferior. This aligns with our expectations
since the global branch lacks the ability to capture fine-grained details
necessary for effective domain adaptation in DG-ReID. On the other
hand, the proposed IGMG network demonstrated improved perfor-
mance with the addition of each granularity component. The gradual
improvement observed in the results supports our claim that integrating
multi-granularity can effectively address the domain shift problem in
DG-ReID. Furthermore, we extended our evaluation beyond the indi-
cated number of partitions and found that the optimal performance
was achieved with the given granular architecture, which aligns with
the results reported in MGN (Wang et al., 2018a). Overall, this exper-
imental analysis confirms that the integration of multiple granularity
components in our IGMG framework leads to significant performance
improvements in DG-ReID, effectively mitigating the challenges posed

by domain shift.
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Fig. 5. Results for the optimization of the embedding size on Rank-01.

Table 6
Effectiveness of various normalization techniques on the proposed IGMG approach.

Methods Gated Norm Backbone Norm. M → D D → M
R-1 mAP R-1 mAP

Baseline – BN 41.7 24.6 53.9 25.4
Baseline IN (learnable) BN 54.8 33.8 65.4 33.6
Baseline IN (w/o learnable) BN 56.8 36.1 69.8 37.1

IGMG – BN 61.9 41.1 71.1 38.6
IGMG IN (learnable) BN 63.3 41.0 72.3 40.4
IGMG w/o learnable IN FrozenBN 59.6 37.5 71.3 39.6
IGMG w/o learnable IN IN 62.6 40.0 75.8 42.1
IGMG w/o learnable IN w/o learnable IN 60.6 38.9 70.4 37.2

IGMG w/o learnable IN BN 64.2 41.6 75.8 42.1

4.3.2. Evaluating the role of IN within our IGMG approach
In this part of the study, we aimed to validate the effectiveness of

non-learnable instance normalization (IN) compared to the learnable
variant. We conducted experiments in the single-source DG-ReID set-
ting for both 𝑀 → 𝐷 and 𝐷 → 𝑀 scenarios. Here, the ‘‘gated norm’’
pertains to the modules used between convolutional layers, while the
‘‘backbone norm’’ pertains to those within the convolutional block’s
residual connections. ‘‘FrozenBN’’ denotes the freezing of Batch norm
learnable parameters to the default ImageNet values. For the purpose of
comparison, we considered the Bag-of-trick (BOT) approach (Luo et al.,
2019) as our baseline.

Table 6 presents the results of this experimental analysis. It demon-
strates that when using IN without learnable affine parameters, both
in the baseline and IGMG framework, consistently better performance
was achieved compared to using IN with learnable affine parameters.
Furthermore, the margin of improvement of Baseline + IN (w/o learn-
able) over the Baseline was higher than that of IGMG (w/o learnable
IN) over IGMG (without IN). These results clearly highlight the ad-
vantages of our proposed contribution. Firstly, the optimization based
on multi-granularity proves to be effective in improving the model’s
generalization capabilities. Secondly, by using non-learnable parame-
ters in the IN module, the model focuses on capturing the inherent
structure of the data rather than relying on the specific statistics of each
domain. Combining these two factors gives rise to our proposed Instance
guided Multi-Granularity (IGMG) framework, which exhibits significant
performance improvements over related alternatives.

4.3.3. Location of IN within the IGMG framework
In our IGMG framework, the application of Non-parametric Instance

Normalization (IN) within the IGMG framework is carefully considered
to address domain-specific biases in the extracted feature represen-
tations effectively. We investigate the optimal locations for applying

IN and validate our findings in the Single-source DG-ReID setting;
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Fig. 6. Results for the optimization of the embedding size on mAP. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version
of this article.)

Table 7
Location of IN gated among convolutional blocks.

Groups M → D D → M
R-1 mAP R-1 mAP

IN0,IN1,IN2, 𝐼𝑁3−5, 𝐼𝑁6−8 58.3 35.7 65.1 31.9
IN0,IN1,IN2, 𝐼𝑁3−5 61.0 38.7 70.6 37.1
IN0,IN1,IN2 59.8 37.3 70.1 36.5
IN1,IN2, 𝐼𝑁3−5 64.2 41.6 75.8 42.1
IN2, 𝐼𝑁3−5 64.0 41.9 73.7 41.2
IN1,IN2 61.0 39.3 73.2 41.3

specifically the 𝑀 → 𝐷 and 𝐷 → 𝑀 scenarios. IN0 is applied to
the feature representation extracted from the Conv1 block. IN3, IN4,
and IN5 are collectively referred to as 𝐼𝑁3−5. IN6, IN7, and IN8 are
collectively referred to as 𝐼𝑁6−8, and they are applied to the final
feature representation of the respective branch.

The experimental results are presented in Table 7. Consistent with
the observations in SNR (Jin et al., 2020) and DualNorm (Jia et al.,
2019), we find that applying non-parametric IN from the initial to mid-
level layers yields better performance compared to other alternatives.
These findings further support the effectiveness and relevance of our
approach. The schematic illustration in Fig. 3 is based on the optimal
performance we achieved in this study.

4.3.4. Ablation study of the embedding size optimization
To optimize our IGMG framework, an important hyperparameter to

consider is the embedding size. We investigated the ideal embedding
size based on the single-source DG-ReID setting for both 𝑀 → 𝐷 and
𝐷 → 𝑀 scenarios. The results of this analysis are depicted in Fig. 5.

In Fig. 6, it is important to note that 𝑔 represents the total number
of granular levels considered in our IGMG framework, which in this
case is 𝑔 = 8. Therefore, the actual embedding size is obtained by
multiplying the embedding size of the individual granular component
by 8. Based on the analysis, it was observed that the optimal per-
formance was achieved when the embedding size of the individual
granular component was set to 512. This finding holds true for both the
𝑀 → 𝐷 and 𝐷 → 𝑀 scenarios. In summary, the experimental analysis
determined that an embedding size of 512 for the individual granular
component leads to the optimal performance of our IGMG framework
in the single-source DG-ReID setting

4.3.5. Performance on different backbones
To further validate our proposed IGMG approach, an ablation study

is conducted considering different CNN backbones architecture. In this
regard, we consider two performance evaluation scenarios: perfor-
mance evaluation on another backbone and performance on different
variants of ResNet architectures.
9

Table 8
Performance of our IGMG on OSNet (Zhou et al., 2019).

Methods Backbones M → D D → M
R-1 mAP R-1 mAP

Baseline OSNet 44.9 26.4 58.8 29.1
SNR Jin et al. (2020) OSNet 54.8 33.8 65.4 33.6
IGMG (Ours) OSNet 58.8 35.9 69.9 36.2

Table 9
Performance of our proposed IGMG approach on different variants of ResNet.

Methods Backbones M → D D → M
R-1 mAP R-1 mAP

Baseline ResNet34 39.7 22.6 49.8 23.4
IGMG (Ours) ResNet34 61.5 37.4 71.3 39.5

Baseline ResNet50 41.7 24.6 53.9 25.4
IGMG (Ours) ResNet50 64.2 41.6 75.8 42.1

Baseline ResNet101 46.8 28.4 55.9 26.4
IGMG (Ours) ResNet101 65.6 42.4 76.1 42.6

Performance on Backbone other than ResNet: In this experiment,
we aimed to evaluate the effectiveness of our proposed approach on
a backbone architecture other than ResNet. We chose the Omni-Scale
Network (OSNet) (Zhou et al., 2019) as the alternative backbone,
which is a lightweight network commonly used in ReID tasks. Adapting
our IGMG architecture for OSNet involved making some modifications
compared to the ResNet-based framework.

Most of the procedures followed by the ResNet architecture re-
mained the same for OSNet, except for the downsampling (DS) oper-
ation and the number of Instance Normalization (IN) blocks. Unlike
ResNet, OSNet does not have a downsampling operation, so we did not
consider it in the adaptation of our IGMG framework. However, we
integrated six IN modules between the OSNet blocks of the backbone
and the multi-granular architectures. In contrast, the ResNet-based
IGMG framework utilized five IN modules. The experimental results
for our IGMG approach on OSNet architecture, using the single-source
setting of 𝑀 → 𝐷 and 𝐷 → 𝑀 scenarios, are presented in Table 8. It
is evident that our proposed IGMG approach outperformed the Baseline
with OSNet architecture significantly in all evaluation metrics for both
𝑀 → 𝐷 and 𝐷 → 𝑀 scenarios. Moreover, IGMG with OSNet achieved
superior performance compared to the state-of-the-art OSNet-SNR (Jin
et al., 2020), surpassing it by 4.0% and 4.5% in rank-01 for 𝑀 → 𝐷
and 𝐷 → 𝑀 scenarios, respectively.

Performance on Different Variants of ResNet: To further demon-
strate the generalization capability of our proposed IGMG framework,
we conducted experiments using different variants of the ResNet archi-
tecture with varying complexities. In addition to the results reported
in our main manuscript using ResNet-50, we implemented the same
experiments with ResNet-34 (a lighter variant) and ResNet-101 (a
deeper variant).

We evaluated all models in the single-source setting of 𝑀 → 𝐷
and 𝐷 → 𝑀 scenarios. The results, as presented in Table 9, consis-
tently show that our IGMG approach achieves significant performance
gains across all three ResNet variants compared to the Baseline (Bag
of Tricks). While the IGMG framework with the deeper ResNet-101
exhibits superior performance among the ResNet variants, the perfor-
mance gap compared to ResNet-50 is marginal. Therefore, considering
the complexity and maintaining a fair comparison with state-of-the-
art approaches, we chose ResNet-50 as the backbone for our extensive
experimental evaluation in the main manuscript. Nonetheless, it is
worth noting that our IGMG framework consistently performs well
and outperforms relevant baselines and state-of-the-art approaches,
regardless of the complexities of the backbone architectures used.
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Fig. 7. Visual comparison of query images to top 10 matching images from the gallery
set for five random persons in the Market1501 dataset under the single-source setting
of 𝐷 → 𝑀 . (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

4.3.6. Qualitative matching results
The objective of this experiment is to visualize the ranking list of the

gallery set corresponding to the matching results with the query. We
conducted this experiment on a target dataset using the single-source
setting and Protocol-2. In the single-source environment, we trained
the model using the 𝐷 → 𝑀 scenario. In Protocol-2, we used the PRID
dataset, which adopts a single-shot setting for evaluation, resulting in
only one positive match available in the gallery setting, as illustrated
in Fig. 8.

In Figs. 7 to 8, the first and second rows represent the ranking
results produced by the baseline approach and our proposed IGMG
approach, respectively. Images surrounded by green boxes indicate a
match between the query and the gallery set. As observed in Figs. 7 to
8, our proposed IGMG approach consistently identifies the true match
in rank-01, regardless of the capture conditions, whereas the baseline
approach finds it in later ranks. We also showcase a case where our
proposed IGMG approach does not find the true match in rank-01
due to a few style variations. However, these matches are eventually
recognized within the first few ranks, predominantly in rank-02. These
visualizations demonstrate the consistent performance of our proposed
IGMG approach, regardless of the dataset size.

5. Conclusions and future work

We present a novel framework designed to address the challenges
of domain-generalized person re-identification (DG-ReID). Our pro-
posed Instance-guided Multi-Granular (IGMG) framework leverages the
concept of multi-granularity, which enables the utilization of infor-
mation at multiple levels of granularity, leading to more robust and
flexible feature representations. By combining these different levels of
information, our IGMG model captures a comprehensive representa-
tion of the underlying data, enhancing its resilience to domain shift
and improving generalization to unseen domains. Furthermore, we
10
Fig. 8. Visual comparison of query images to top 10 matching images from the gallery
set for five random persons in the PRID dataset under the Protocol-2 setting.

exploit the advantages of Instance Normalization (IN) without learnable
affine parameters, which introduces a gating effect into the backbone
convolutional neural network (CNN). This gating effect filters out
domain-specific style statistics, thereby further enhancing the model’s
generalization ability. Experimental results on multiple benchmark
datasets demonstrate that our proposed framework consistently out-
performs state-of-the-art DG-ReID methods, regardless of the dataset
size. Moreover, our proposed architecture is versatile and applicable to
various vision applications. Therefore, future experiments can explore
the potential of our IGMG approach in different applications, using
diverse backbone architectures. This flexibility and scalability make our
framework a promising solution for a wide range of computer vision
tasks.
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